Theoretical Implications of Time-Dependent Double Resonance Neutron Interferometry

  • Jean-Pierre Vigier
Part of the NATO ASI Series book series (NSSB, volume 162)


The purpose of this communication is to discuss the implications of neutron interferometric experiments on the possible interpretation of the quantum formalism. The most recent one, which is a time-dependent double resonance experiment performed by the Vienna experimentalists1 following a suggestion of our group2, has farreaching implications, which, as we hope to show, establish the validity of the causal Stochastic Interpretation of Quantum Mechanics (SIQM) as the most adequate theoretical tool in grasping quantum “paradoxes”. This approach which follows the views of Einstein and de Broglie in their controversy with Bohr and Heisenberg, develops the model of de Broglie’s pilot wave theory3 and Bohm’s quantum potential concept4. This explains why, before we discuss neutron interferometry, we find it useful to expose the basic ingredients of this model for an ordinary double slit situation.


Spin Flipper Spin Vector Quantum Potential Quantum Formalism Spatial Interference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Badurek, H. Rauch and D. Tupinger, “Neutron Interferometric Double Resonance Experiment”, to appear in Phys.Rev.A.Google Scholar
  2. 2.
    C. Dewdney, Ph. Gueret, A. Kyprianidis and J.P. Vigier, Phys.Lett. 102A: 291 (1984).CrossRefGoogle Scholar
  3. 3.
    C. Dewdney, A. Garuccio, A. Kyprianidis and J.P. Vigier Phys.Lett. 104A: 325 (1984).CrossRefGoogle Scholar
  4. 4.
    L. de Broglie, Non Linear Wave Mechanics, Elsevier, Amsterdam, 1960.MATHGoogle Scholar
  5. 5.
    D. Bohm, Phys.Rev. 85: 166 (1952).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    J. P. Vigier, Astr.Nachr. 303: 55 (1982).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    P.A.M. Dirac, Nature, 168: 906 (1951).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Ph. Gueret and J.P. Vigier, Lett. Nuov. Cim. 38: 125 (1983).MathSciNetCrossRefGoogle Scholar
  9. 9.
    C. Philippidis, C. Dewdney and B. Hiley, Nuov.Cim. B52: 15 (1979). C. Dewdney, Ph.D.Thesis, London 1983.Google Scholar
  10. 10.
    J. Summhammer, G. Badurek and U. Kischko, Phys.Lett. 90A: 110 (1982).CrossRefGoogle Scholar
  11. 11.
    G. Badurek, H. Rauch, J. Summhammer, U. Kischko and A. Zeilinger, J. Phys. Al 6: 1133 (1983).ADSCrossRefGoogle Scholar
  12. 12.
    J. Summhammer, G. Badurek, H. Rauch, U. Kischko and A. Zeilinger, Phys.Rev. A27: 2523 (1983).ADSCrossRefGoogle Scholar
  13. 13.
    G. Badurek, H. Rauch and J. Summhammer, Phys.Rev.Lett. 51: 1015 (1983).ADSCrossRefGoogle Scholar
  14. 14.
    D. Böhm, R. Schiller and J. Tiomno, Suppl. al Nuov.Cim. Serie X. (1955).Google Scholar
  15. 15.
    C. Dewdney, P.R. Holland, A. Kyprianidis and J.P. Vigier, Trajectories and spin vector orientations in the causal interpretation of the Pauli equation, preprint Inst.H.Poincaré, submitted to Phys.Rev.D. (1986).Google Scholar
  16. 16.
    C. Dewdney, Phys.Lett. 109A: 377 (1985).CrossRefGoogle Scholar
  17. 17.
    C. Dewdney, P.R. Holland, A. Kyprianidis, J.P. Vigier, Spin superposi¬tion in neutron interferometry, preprint Inst.H.Poincaré (1985).Google Scholar
  18. 18.
    H. Rauch, “Polarized Neutron Interferometry”, Proceedings of the Int. Conf. “New Techniques and Ideas in Quantum Measurement Theory”, N.Y. Jan. 1986.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Jean-Pierre Vigier
    • 1
  1. 1.Laboratoire de Physique ThéoriqueInstitut Henri PoincaréParisFrance

Personalised recommendations