Skip to main content

Pharmacology of DNA Binding Drugs

  • Chapter
DNA—Ligand Interactions

Part of the book series: NATO ASI Series ((volume 137))

Abstract

Many compounds from various sources have been found able to bind to nucleic acids. Among those are numerous basic dyes used to stain the chromatin in the cell nucleus, several antibiotics, plant alcaloïds and various chemicals synthetized during the last fifty years. Several of these compounds have useful pharmacological properties and are used in human and veterinary medicine for the treatment of parasitic diseases (rev. Van den Bossche, 1978). and cancers (rev. Le Pecq, 1978; Pratt and Ruddon, 1979). All these chemicals act by killing or preventing specifically the growth of target cells. A limited list of the most important derivatives is given in Table 1 with their corresponding structures shown in Figure 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arai, K.I., and Kornberg, A., 1981, Mechanism of dnaB protein action III allosteric role of ATP in the alteration of DNA structure by dnaB protein in priming replication, J. Biol. Chem., 256:5260–5266.

    PubMed  CAS  Google Scholar 

  • Bendirdjian, J-P., Delaporte, C., Roques, B. P., and Jacquemin-Sablon, A., 1984, Effects of 7H-pyridocarbazole mono and bifunctional DNA-intercalators on Chinese hamster lung cells in vitro, Biochem. Pharmacol., 33:3681–3688.

    Article  PubMed  CAS  Google Scholar 

  • Charcosset, J-Y., Salles, B., and Jacquemin-Sablon, A., 1983, Uptake and cytofluorescence localization of ellipticine derivatives in sensitive and resistant Chinese hamster lung cells, Biochem. Pharmacol., 32:1037–1044.

    Article  PubMed  CAS  Google Scholar 

  • Charcosset, J-Y., Bendirdjian, J-P., Lantieri, M-F., and Jacquemin-Sablon, A., 1985, Effects of 9-hydroxyellipticine on cell survival, macromolecular synthesis, and cell cycle progression in sensitive and resistant Chinese hamster lung cells, Cancer Res., 45:4229–4236.

    PubMed  CAS  Google Scholar 

  • Chen, G.L., Yang, L., Rowe, T.C., Halligan, B.D., Tewey, K.M., and Liu, L.F., 1984, Non intercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II, J. Biol. Chem., 259:13560–13566.

    PubMed  CAS  Google Scholar 

  • Chen, L.B., Weiss, M.J., Davis, S., Bleday, R.S., Wong, J.R., Song, J., Terasaki, M., Shepherd, E.L., Walker, E.S., and Steele, Jr. G.D., 1985, in: “Cancer Cells 3.-growth factors and transformation”, J. Feramisco, B. Ozanne and Ch. Stiles eds. Cold Spring Harbor laboratories publ. pp.433-443.

    Google Scholar 

  • Denny, W.A., Baguley, B.C., Cain, B.F., and Waring, M.J., 1983, Antitumor acridines, in: “Molecular aspects of anti-cancer drug action”, Neidle S. and Waring M.J. ed., Verlag Chemie Publ., p.1-34.

    Google Scholar 

  • Douc-Rasy, S., Kayser, A., and Riou, G., 1984, Inhibition of the reactions catalysed by a type I topoisomerase and a catenating enzyme of Trypanosoma cruzi by DNA-intercalating drugs. Preferential inhibition of the catenating reaction, The EMBO J., 3:11–16.

    CAS  Google Scholar 

  • Douc-Rasy, S., Kayer, A., Riou, J.F., and Riou, G., 1986, ATP-independent type II topoisomerase from trypanosomes, Proc. Natl. Acad. Sci. USA, in press.

    Google Scholar 

  • Esnault, C., Roques, B.P., Jacquemin-Sablon, A., and Le Pecq, J.B., 1984, Effects of new antitumor bifunctional intercalators derived from 7H-pyridocarbazole on sensitive and resistant L1210 cells, Cancer Res., 44:4335–4360.

    Google Scholar 

  • Fairfield, F.R., Bauer, W.R., and Simpson, M.V., 1985, Studies on mitochondrial type I topoisomerase and on its function, Biochim. Biophys. Acta, 824:45–57.

    Article  PubMed  CAS  Google Scholar 

  • Glisson, B., Gupta, R., Hodges, P., and Ross, W., 1986a, Characterization of acquired Epipodophyllotoxin resistance in a Chinese hamster ovary cell line: Loss of drug-stimulated DNA cleavage activity, Cancer Res., 46:1934–1938.

    PubMed  CAS  Google Scholar 

  • Glisson, B., Gupta, R., Hodges, P., and Ross, W., 1986b, Cross resistance to intercalating agents in a epipodophyllotoxin-resistant hamster ovary cell line: Evidence for a common intracellular target, Cancer Res., 46:1939–1942.

    PubMed  CAS  Google Scholar 

  • Huisman, O., and D’Ari, R., 1981, An inducible DNA replication cell division coupling mechanism in E.coli, Nature, 290:727–799.

    Article  Google Scholar 

  • Lambert, B., and Le Pecq, J.B., 1982, Isolement et caractérisation de souches d’E.coli sensibles à des toxiques hydrophiles et/ou chargés, C. R. Acad. Sci. Paris, 294:447–450.

    Google Scholar 

  • Lambert, B., Laugaa, Ph., Roques, B.P., and Le Pecq, J.B., 1986, Cytotoxicity and SOS inducing ability of ethidium and photoactivable analogs on E.coli ethidium sensitive (Ebs) strains, Mutation Res., in press.

    Google Scholar 

  • Laugaa, Ph., Markovits, J., Delbarre, A., Le Pecq, J.B., and Roques, B.P., 1985, DNA tris-intercalation: First acridine trimer with DNA affinity in the range of DNA regulatory proteins. Kinetics studies, Biochemistry, 24:5567–5575.

    Article  PubMed  CAS  Google Scholar 

  • Le Pecq, J.B., 1978, “Chimiothérapie anticancéreuse”, Hermann Publ., Paris.

    Google Scholar 

  • Le Pecq, J.B., 1982, Spécificité d’action des substances antitumorales, J. Pharmacol., 13:53–75.

    PubMed  Google Scholar 

  • Le Pecq, J.B., Dat-Xuong, N., Gosse, Ch., and Paoletti, C., 1974, A new antitumoral agent: 9 hydroxyellipticine. Possibility of a rational design of anticancerous drugs in the series of DNA interacting: drugs, Proc. Natl. Acad. Sci. USA, 71:5078–5082.

    Article  PubMed  Google Scholar 

  • Le Pecq, J.B., and Roques, B.P., 1986, DNA binding and biological properties of bis-and trisintercalating molecules, in “Mechanisms of DNA damage and repair”, Simic M.G., Grossman L. and Upton A.C. ed., Plenum Press Publ., New York, p.219–230.

    Chapter  Google Scholar 

  • Markovits, J., Pommier, Y., Mattern, M.R., Roques, B.P., Le Pecq, J.B., and Kohn, K.W., 1986, Effect of the bifunctional antitumor intercalator Ditercalinium on DNA in Mouse leukemia (L1210) cells and on L1210 DNA topoisomerase II, Cancer Res., in press.

    Google Scholar 

  • Mindford, J., Pommier, Y., Filipski, J., Kohn, K., Derrigan, D., Mattern, M.R., Michaels, S., Schwartz, R., and Zwelling, L., 1986, Isolation of interalator-dependent protein linked DNA strand cleavage activity from cell nuclei and identification as topoisomerase II, Biochemistry, 25:9–16.

    Article  Google Scholar 

  • Nelson, E.M., Tewey, K.M., and Liu, L.F., 1984, Mechanism of antitumor drug action: Poisoning of mammalian DNA topoisomerase II on DNA by 4′-(9-acridinylamino)-methane sulfon-m-anisidide, Proc. Natl. Acad. Sci. USA, 81:1361–1365.

    Article  PubMed  CAS  Google Scholar 

  • Paoletti, C., Lesca, C., Cros, S., Malvy, C., and Auclair, C., 1979, Ellipticine and derivatives induce breakage of L1210 DNA in vitro, Biochem. Pharmacol., 28:345–350.

    Article  PubMed  CAS  Google Scholar 

  • Pelaprat, D., Delbarre, A., Le Guen, I., Roques, B.P., and Le Pecq, J.B., 1980, DNA intercalating compounds as potential antitumor agents. 2. Preparation and properties of 7H-pyridocarbazole dimers, J. Med. Chem., 23:1336–1343.

    Article  PubMed  CAS  Google Scholar 

  • Pommier, Y., Mattern, M.R., Schwartz, R.E., and Zwelling, L.A., 1984a, Absence of swiveling at sites of intercalator-induced protein-associated deoxyribonucleic acid strand breaks in mammalian cells nucleoïds, Biochemistry, 23:2922–2927.

    Article  PubMed  CAS  Google Scholar 

  • Pommier, Y., Schwartz, R.E., Kohn, K.W., and Zwelling, L.A., 1984b, Formation and rejoining of deoxyribonucleic acid double-strand breaks induced in isolated cell nuclei by antineoplastic intercalating agents, Biochemistry, 23:3194–3201.

    Article  PubMed  CAS  Google Scholar 

  • Pommier, Y., Zwelling, L.A., Kao-Shan, C.S., Whang-Peng, J., and Bradley, M., 1985, Correlation between intercalator-induced DNA strand breaks and sister chromatid exchanges, mutations and cytotoxicity in Chinese hamster cells, Cancer Res., 45:3143–3147.

    PubMed  CAS  Google Scholar 

  • Pommier, Y., Schwartz, R.E., Zwelling, L., Kerrigan, D., Mattern M., Charcosset, J.Y., Jacquemin-Sablon, A., and Kohn, K., 1986a, Reduced formation of protein-associated DNA strand breaks in Chinese hamster cells resistant to topoisomerase II inhibitors, Cancer Res., 46:611–616.

    PubMed  CAS  Google Scholar 

  • Pommier, Y., Kerrigan, D., Schwartz, R., Swack, J.A., and McCurdy, A., 1986b, Altered DNA topoisomerase II activity in Chinese hamster cells resistant to topoisomerase II inhibitors, Cancer Res., 46:3075–3081.

    PubMed  CAS  Google Scholar 

  • Povirk, L.F., Hogan, M., and Dattagupta, N., 1979, Binding of Bleomycin to DNA: Intercalation of the bithiazole rings, Biochemistry, 18:96–101.

    Article  PubMed  CAS  Google Scholar 

  • Pratt, W., and Ruddon, R., 1979, “The Anticancer Drugs”, Oxford University Press Publ., New York.

    Google Scholar 

  • Quigley, G.J., Ughetto, G., van der Marel, G.A., van Boom, J.H., Wang, A.H.J., and Rich, A., 1986, Non-Watson-Crick G.C and A.T base pairs in a DNA-antibiotic complex, Science, 232:1255–1258.

    Article  PubMed  CAS  Google Scholar 

  • Rao, P.N., 1979, G2 arrest induced by anticancer drug, in “Effects of drugs on the cell nucleus”, H. Busch, S.T. Crooke and Y. Daskal ed., Academic Press, New York, p.475–490.

    Google Scholar 

  • Riou, J.F., Multon, E., Vilarem, M.J., Larsen, Ch., and Riou, G., 1986a, In vivo Stimulation by antitumor drugs of the topoisomerase II induced cleavage sites in c-myc protooncogène, Biochem. Biophys. Res. Comm., 137:154–160.

    Article  PubMed  CAS  Google Scholar 

  • Riou, J.F., Vilarem, M.J., Larsen, C.J., and Riou, G., 1986b, Characterization of the topoisomerase II-induced cleavage sites in the c-myc protooncogene: in vitro stimulation by the antitumoral intercalating drug mAMSA, Biochem. Pharmacol., in press.

    Google Scholar 

  • Riou, J.F., Gabillot, M., Philippe, M., Schrevel, J., and Riou, G., 1986c, Purification and characterization of plasmodium berghei DNA topoisomerase I and II: Drug action inhibition of decatenation and relaxation, and stimulation of DNA cleavage, Biochemistry, 25:1471–1479.

    Article  PubMed  CAS  Google Scholar 

  • Roques, B.P., Pelaprat, D., Le Guen, I., Porcher, G., Gosse, Ch., and Le Pecq, J.B., 1979, DNA bifunctional intercalators. Antileukemic activities of new pyridocarbazole dimers, Biochem. Pharmacol., 28, 1811–1815.

    Article  PubMed  CAS  Google Scholar 

  • Ross, W.E., 1985, DNA topoisomerases as targets for cancer therapy, Biochem. Pharmacol., 34:4191–4195.

    Article  PubMed  CAS  Google Scholar 

  • Ross, W.E., and Bradley, M.O., 1981, DNA double-strand breaks in mammalian cells after exposure to DNA intercalating agents, Biochim. Biophys. Acta, 654:129–134.

    Article  PubMed  CAS  Google Scholar 

  • Ross, W.E., and Smith, M.C., 1982, Repair of deoxyribonucleic acid lesions caused by adriamycin and ellipticine, Biochem. Pharmacol., 31:1931–1935.

    Article  PubMed  CAS  Google Scholar 

  • Ross, W.E., Glaubiger, D.L., and Kohn, K.W., 1978, Protein-associated DNA breaks in cell treated with adriamycin and ellipticine, Biochim. Biophys. Acta, 519:23–30.

    Article  PubMed  CAS  Google Scholar 

  • Ross, W.E., Glaubiger, D.L., and Kohn, K.W., 1979, Qualitative and quantitative aspects of intercalator-induced DNA strand breaks, Biochim. Biophys. Acta, 562:41–50.

    Article  PubMed  CAS  Google Scholar 

  • Ross, W., Rowe, T., Glisson, B., Yalowich, J., and Liu, L., 1984, Role of topoisomerase II in mediating epipodophyllotoxin-induced DNA cleavage, Cancer Res., 44:5857–5860.

    PubMed  CAS  Google Scholar 

  • Rowe, T., Kupfer, G., and Ross, W., 1985, Inhibition of epipodophyllotoxin cytotoxicity by interference with topoisomerase-mediated DNA cleavage, Biochem. Pharmacol., 34:2483–2487.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, T., Chen, G., and Liu, L., 1986a, DNA damage by antitumor acridines mediated by mammalian DNA topoisomerase II, Cancer Res., 46:2021–2026.

    PubMed  CAS  Google Scholar 

  • Rowe, T., Wang, J.C., and Liu, L., 1986b, In vivo localization of DNA topoisomerase II cleavage sites on Drosophila heat shock chromatin, Molecular and Cellular Biology, 6:985–992.

    PubMed  CAS  Google Scholar 

  • Salles, B., Charcosset, J.Y., and Jacquemin-Sablon, A., 1982, Isolation and properties of Chinese hamster lung cells resistant to ellipticine derivatives, Cancer Treat. Rep., 66:327–338.

    PubMed  CAS  Google Scholar 

  • Tewey, K., Chen, G., Nelson, E., and Liu, L., 1984, Intercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II, J. Biol. Chem., 259:9182–9187.

    PubMed  CAS  Google Scholar 

  • Tritton, T.R., and Yee, G., 1982, The antitumor agent adriamycin can be actively cytotoxic without entering cells, Science, 217:248–250.

    Article  CAS  Google Scholar 

  • Umezawa, H., 1976, Bleomycin: Discovery, chemistry and action, Gann, 19:3–36.

    CAS  Google Scholar 

  • Van den Bossche, H., 1978, Chemotherapy of parasitic infections, Nature, 273:626–630.

    Article  PubMed  Google Scholar 

  • Wang, J.C., 1985, DNA topoisomerases, Ann. Rev. Biochem., 54:665–697.

    Article  PubMed  CAS  Google Scholar 

  • Waring, M.J., 1981, DNA modification and cancer, Ann. Rev. Biochem., 50:159–192.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, W.D., and Jones, R.L., 1981, Intercalating drugs: DNA binding and molecular pharmacology, Adv. Pharmacol. Chemother., 18:177–222.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L., Rowe, R.C., Nelson, E.M., and Liu, L., 1985, In vivo mapping of DNA topoisomerase II-specific cleavage sites on SV40 chromatin, Cell, 41:127–132.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer, Ch., and Wähnert, U., 1986, Nonintercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material, Prog. Biophys. Molec. Biol., 47:31–112.

    Article  CAS  Google Scholar 

  • Zwelling, L., Michaels, S., Erickson, L., Ungerleider, R.S., Nichols, M., and Kohn, K.W., 1981, Protein associated deoxyribonucleic acid strand breaks in L1210 cells treated with the deoxyribonucleic intercalating agents 4′-(9-acridiny1amino)methanesulfon-m-anisidide and adriamycin, Biochemistry, 20:6553–6563.

    Article  PubMed  CAS  Google Scholar 

  • Zwelling, L., Michaels, S., Kerrigan, D., Pommier, Y., and Kohn, K., 1982, Protein-associated deoxyribonucleic acid strand breaks produced in mouse leukemia L1210 cells by ellipticine and 2-methyl-9-hydroxyellipticinium, Biochem. Pharmacol., 31:3261–3267.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Lambert, B., Le Pecq, JB. (1987). Pharmacology of DNA Binding Drugs. In: Guschlbauer, W., Saenger, W. (eds) DNA—Ligand Interactions. NATO ASI Series, vol 137. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5383-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5383-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5385-0

  • Online ISBN: 978-1-4684-5383-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics