Specific Gene Regulation by Oligodeoxynucleotides Covalently Linked to Intercalating Agents

  • Claude Hélène
Part of the NATO ASI Series book series (volume 137)


In living cells, the regulation of gene expression occurs at different levels: transcription of one of the DNA strands into RNA, splicing of pre-messenger RNAs which eliminate intron sequences after transcription of mosaic genes, post-transcriptional modifications of mRNAs (capping, polyadenylation...), transfer of mRNA from the nucleus to the cytoplasm, translation of mRNA, post-translational modifications of proteins... In most cases the regulation is achieved by proteins which bind either DNA sequences to block or activate transcription or RNA to block, e.g., translation (see Hélène and Lancelot, 1982, for a review). More recently it has been shown that, in bacteria, small RNAs could play a regulatory role similar to that of regulatory proteins by hybridizing to mRNAs (see Green et al., 1986, for a review). The control of plasmid copy number and immunity in bacteria is also achieved by a small RNA (RNA I) which arises from transcription in the reverse direction as compared to that of the primer RNA (RNA II) utilized to initiate plasmid replication. Being transcribed from opposite strands the two RNAs are fully complementary and their association prevents replication initiation (see Tomizawa, 1986 and references therein). The role of RNAs in the regulation of mRNA translation was first demonstrated in E.coli. The translation of mRNAs for proteins involved in the regulation of plasmid R1 replication is controlled by a small RNA which is transcribed in the reverse direction with respect to the mRNA. Complete base pairing occurs between the mRNA and the regulatory RNA which prevents ribosome from translating the mRNA (Light and Molin, 1983). A similar situation was observed for the regulation of transposase synthesis involved in Tn 10 transposition (Simons et al., 1983). It was then discovered that the synthesis of the ompF protein was controlled by a small RNA transcribed from a DNA region close to the ompC gene. Complex formation between the regulatory RNA and the ompF mRNA did not involve complete base pairing but ensured sufficient stability to interfere with translation (Mizuno et al., 1984). A more recent study showed that hybrid formation between a small RNA and the 5′- end of a mRNA could induce premature termination of transcription, thereby controlling gene expression at another level than translation (Okamoto and Freundlich, 1986). All the examples briefly described above involve bacterial systems. There is some evidence that a similar involvement of RNAs as regulatory elements could occur in eukaryotic cells as well (Heywood, 1986; Spencer et al., 1986; Williams and Fried, 1986).


Complementary Sequence Intercalate Agent Brome Mosaic Virus Acridine Derivative Wheat Germ Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asseline, U., Thuong, N.T., and Hélène, C., 1983, C.R. Acad. Soi. Paris, 297(III): 369–372.Google Scholar
  2. Asseline, U., Delarue, M., Lancelot, G., Toulmé, F., Thuong, N.T., Montenay-Garestier, T., and C. Hélène 1984 a, Proc. Nat. Acad. Sci. USA, 81:3297–3301.PubMedCrossRefGoogle Scholar
  3. Asseline, U., Toulmé, F., Thuong, N.T., Delarue, M., Montenay-Garestier T., and Hélène C. 1984 b, EMBO J. 3:795–800.PubMedGoogle Scholar
  4. Asseline, U., Thuong N.T., and Hélène C., 1986, Nucleosides and Nucleo tides, 5:45–63.CrossRefGoogle Scholar
  5. Bayard, B., Bisbal, C., and Lebleu, B., 1986, Biochemistry, 25:3730–3736.PubMedCrossRefGoogle Scholar
  6. Blake, K.R., Murakami, A., and Miller, P.S., 1985, Biochemistry, 24:6132–6138.PubMedCrossRefGoogle Scholar
  7. Boidot-Forget, M., Thuong, N.T., Chassignol, M., and Hélène, C., 1986 C.R. Acad. Sci. Paris, 302(II):75–80.Google Scholar
  8. Boutorin, A.S., Vlassov, V.V., Kazakov, S.A., Kutiavin, I.V., and Podyminogin, M.A., 1984, FEBS Setters, 172:43–46.CrossRefGoogle Scholar
  9. Cazenave, C., Loreau, N., Toulmé J.J., and Hélène, C., 1986, Biochimie, 68:1063–1069.PubMedCrossRefGoogle Scholar
  10. Chu, B.C.F., and Orgel, L.E., 1985, Proc. Nat. Acad. Sci. USA, 82:963–967.PubMedCrossRefGoogle Scholar
  11. Cornelissen, A.W.C.A., Verspieren, M.P., Toulmé, J.J., Swinkels, B.W., and Bost, P., 1986, Nucl. Ac. Res., 14:5605–5614.CrossRefGoogle Scholar
  12. Dreyer, G.B., and Dervan, P.B., 1985, Proc. Nat. Acad. Sci. USA, 82:968–972.PubMedCrossRefGoogle Scholar
  13. Green, P.J., Pines, O., and Inouye, M., 1986, Ann. Rev. Biochem., 55:569–597.PubMedCrossRefGoogle Scholar
  14. Hélène, C., and Lancelot, G., 1982, Prog. Biophys. Mol. Biol., 39:1–68.PubMedCrossRefGoogle Scholar
  15. Hélène, C., Montenay-Garestier, T., Saison, T., Takasugi, M., Toulmé, J.J., Asseline, U., Lancelot, G., Maurizot, J.C., Toulmé, F., and Thuong, N.T., 1985, Biochimie, 67:777–783.PubMedCrossRefGoogle Scholar
  16. Hélène, C., Toulmé, F., Delarue, M., Asseline, U., Takasugi, M., Maurizot, M., Montenay-Garestier, T., and Thuong, N.T., 1986, in “Biomolecular Stereodynamics III”. Sarma R.H. and Sarma M.H., Eds, Adenine Press, pp. 119-130.Google Scholar
  17. Heywood, S.M., 1986, Nucl. Ac. Res., 14:6771–6772.CrossRefGoogle Scholar
  18. Jayaraman, K., McParland, K., Miller P., and Ts’o, P.O.P., 1981, Proc. Nat.Acad. Sci. USA, 78:1537–1541.PubMedCrossRefGoogle Scholar
  19. Kawasaki, E.S., 1985, Nucl. Ac. Res., 13:4991–5004.CrossRefGoogle Scholar
  20. Kim, S.K., and Wold, B.J., 1985, Cell, 42:129–138.PubMedCrossRefGoogle Scholar
  21. Knorre, D.G., and Vlassov, V.V., 1985, Prog. Nucl. Ac. Res. Mol. Biol., 32:291–320.CrossRefGoogle Scholar
  22. Lancelot, G., Asseline, U., Thuong, N.T., and Hélène, C., 1985, Biochemistry 24:2521–2529.PubMedCrossRefGoogle Scholar
  23. Lancelot, G., Asseline, U., Thuong, N.T., and Hélène, C., 1986, J. Bio-mol. Struct. Dyn., 3:913–921.CrossRefGoogle Scholar
  24. Lancelot, G., and Thuong, N.T., 1986, Biochemistry, 25:5357–5363.PubMedCrossRefGoogle Scholar
  25. Light, J., and Molin, S., 1983, EMBO J., 2:93–98.PubMedGoogle Scholar
  26. Miller, P.S., Agris, C.H., Blake, K.R., Murakami, A., Spitz, S.A., Reddy, P.M., and Ts’o, P.O.P., 1983, in “Nucleic Acids: The Vectors of Life”, Pullman, B., and Jortner, P., Eds, D. Reidel, pp.521-535.Google Scholar
  27. Minshull, J., and Hunt, T., 1986, Nucl. Ac. Res., 14:6433–6451.CrossRefGoogle Scholar
  28. Mizuno, T., Chou, M.Y., and Inouye, M., 1984, Proc. Nat. Acad. Sci. USA, 81:1966–1970.PubMedCrossRefGoogle Scholar
  29. Okamoto, K., and Freundlich, M., 1986, Proc. Nat. Acad. Sci. USA, 81:5000–5004.CrossRefGoogle Scholar
  30. Paterson, B.M., Roberts, B.E., and Kuff, E.L., 1977, Proc.Nat. Acad. Sci. USA, 74:4370–4374.PubMedCrossRefGoogle Scholar
  31. Simons, R.W., Hoopes, B.C., McClure, W.R., and Kleckner, N., 1983, Cell, 34:673–682.PubMedCrossRefGoogle Scholar
  32. Sigman, D.W., 1986, Accounts Chem. Res., 19:180–186.CrossRefGoogle Scholar
  33. Spencer, C.A., Gietz, R.D., and Hodgetts, R.B., 1986, Nature 322:279–281.PubMedCrossRefGoogle Scholar
  34. Stepheson, M.L., and Zamecnick, P.C., 1978, Proc. Nat. Acad. Sci.USA, 75:285–288.CrossRefGoogle Scholar
  35. Swinkels, B.W., and Bost, P., 1986, Nucl. Ac. Res., 14:5605–5614.CrossRefGoogle Scholar
  36. Tomizawa, J., 1986, Cell, 47:89–97.PubMedCrossRefGoogle Scholar
  37. Toulmé, J.J., Krisch, M.M., Loreau, N., Thuong, N.T., and Hélène, C., 1986, Proc. Nat. Acad. Sci.USA, 83:1227–1231.PubMedCrossRefGoogle Scholar
  38. Trudel, M., Dondon, J., Grunberg-Manago, M., Finelli, J., and Buckingham, R.H., 1981, Biochimie, 63:235–240.PubMedCrossRefGoogle Scholar
  39. Weintraub, H., Izant, J.G., and Harland, R.M., 1985, Trends in Genetics, 1:22–25.CrossRefGoogle Scholar
  40. Williams, T., and Fried, M., 1986, Nature, 322:275–279.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Claude Hélène
    • 1
  1. 1.Laboratoire de Biophysique, INSERM U.201, CNRS UA 481Muséum National d’Histoire NaturelleParisFrance

Personalised recommendations