Specificity and Dynamics of Protein-Nucleic Acid Interactions

  • Dietmar Porschke
Part of the NATO ASI Series book series (volume 137)


First, a survey is given on model experiments, which provide information on the contribution of individual amino acid side chains to interactions of amino acids with nucleic acids. The most sensitive approach proved to be an analysis of helix-coil transitions in the presence of various ligands. Measurements for different RNA and DNA helices in the presence of amino acid amides demonstrate the existence of an affinity scale for the interaction of amino acid residues with nucleic acids, which is mainly determined by the hydrophobicity. The data indicate a direct pathway for the evolution of melting proteins and can be used to construct a simple model for the evolution of the genetic code. Recent experiments also demonstrate a selective interaction of amino acid residues with tRNAPhe.

In the second part, the dynamics of nucleic acid ligand interactions is discussed. As shown by electric field jump experiments, simple oligonucleotide-oligopeptide complexes are formed at a diffusion controlled rate, whereas “insertion” of aromatic residues between stacked bases is already a relatively slow reaction. An example is also given for the use of electro-optical procedures for analysis of structures in solution: rotation time constants demonstrate that binding of cyclic AMP receptor to specific DNA fragments leads to strong bending of the double helix around the protein. The importance of ligand mobility along nucleic acid chains is demonstrated for the example of a melting protein. Finally, the dynamics of a repressor-operator recognition is compared for the lac- and the tet-system; some mechanisms for the motion of ligands along polynucleotides are discussed.


Aromatic Amino Acid Electric Field Pulse Double Helix Hydrophilic Amino Acid Nucleotide Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Helene and J.C. Maurizot, CRC Crit. Rev. Biochem. 10:213 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    J.C. Lacey and D.W. Mullins Jr., Orig. Life 13:3 (1983).PubMedCrossRefGoogle Scholar
  3. 3.
    D. Porschke, Eur. J. Biochem 86:291 (1978).PubMedCrossRefGoogle Scholar
  4. 4.
    E.J. Gabbay, in Bioorganic “Chemistry”, Vol. 3, Macro-and Multimolecular Systems, Ed. van Tamelen, Academic Press, New York, p. 33.Google Scholar
  5. 5.
    Y.S. Lazurkin, M.D. Frank-Kamenetskii and E.N. Trifonov, Biopolymers 9:1253 (1970).PubMedCrossRefGoogle Scholar
  6. 6.
    J.D. McGhee, Biopolymers 15:1345 (1976).PubMedCrossRefGoogle Scholar
  7. 7.
    L. Kotin, J. Mol. Biol. 7:309 (1963).PubMedCrossRefGoogle Scholar
  8. 8.
    C. Schildkraut and S. Lifson, Biopolymers 3:195 (1965).PubMedCrossRefGoogle Scholar
  9. 9.
    G.S. Manning, Q. Rev. Biophys. 11:179 (1978).PubMedCrossRefGoogle Scholar
  10. 10.
    D. Porschke and M. Jung, Nucl. Acids Res. 10:6163 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    D. Porschke, J. Mol. Evol. 21:192 (1985).CrossRefGoogle Scholar
  12. 12.
    D. Porschke and J. Ronnenberg, Biopolymers 22:2549 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    S.C. Kowalczykowski, D.G. Bear and P.H. von Hippel, “The Enzymes”, Vol. XIV, p. 373 (1981).CrossRefGoogle Scholar
  14. 14.
    J.W. Chase and K.R. Williams, Ann. Rev. Biochem. 55:103 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    M.V. Volkenstein, Biochim. Biophys. Acta 119:421 (1966).PubMedCrossRefGoogle Scholar
  16. 16.
    C. Woese, “The genetic code”, Harper and Row, New York (1967).Google Scholar
  17. 17.
    T.H. Jukes, “The amino acid code”, in: Neuberger, A., Ed., Comprehensive biochemistry Elsevier, Amsterdam Vol. 24:235 (1977).Google Scholar
  18. 18.
    R.V. Wolfenden, P.M. Cullis and C.C.F. Southgate, Science 206:575 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    W. Bujalowski and D. Porschke, Nucl. Acids Res. 12:7549 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    D. Porschke, Ann. Rev. Phys. Chem. 36:159 (1985).CrossRefGoogle Scholar
  21. 21.
    D. Porschke, Biophys. Chem. 10:1 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    D. Porschke, Nucl. Acids Res. 8:1591 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    D. Porschke and J. Ronnenberg, Biophys. Chem. 13:283 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    E. Fredericq and C. Houssier, “Electric Dichroism and Electric Birefringence”, Clarendon, Oxford (1973).Google Scholar
  25. 25.
    S. Broersma, J. Chem. Phys. 32:1626, 1632 (1960).CrossRefGoogle Scholar
  26. 26.
    D. Porschke, W. Hillen and M. Takahashi, EMBO J. 3:2873 (1984).PubMedGoogle Scholar
  27. 27.
    M. Ptashne, Nature 322:697 (1986).PubMedCrossRefGoogle Scholar
  28. 28.
    J.D. McGhee and P.H. von Hippel, J. Mol. Biol. 86:469 (1974).PubMedCrossRefGoogle Scholar
  29. 29.
    I.R. Epstein, Biopolymers 18:2037 (1979).PubMedCrossRefGoogle Scholar
  30. 30.
    D. Porschke and H. Rauh, Biochemistry 22:4737 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    A.D. Riggs, S. Bourgeois and M. Cohn, J. Mol. Biol. 53:401 (1970).PubMedCrossRefGoogle Scholar
  32. 32.
    M.D. Barkley, Biochemistry 20:3833 (1981).PubMedCrossRefGoogle Scholar
  33. 33.
    R.B. Winter, O.G. Berg and P.H. von Hippel, Biochemistry 20:6961 (1981).PubMedCrossRefGoogle Scholar
  34. 34.
    G. Adam and M. Delbrück, in “Structural chemistry and molecular biology”, Eds. A. Rich and N. Davidson, Freeman, p. 198 (1968).Google Scholar
  35. 35.
    P.H. Richter and M. Eigen, Biophys. Chem. 2:255 (1974).PubMedCrossRefGoogle Scholar
  36. 36.
    O.G. Berg, R.B. Winter and P.H. von Hippel, Biochemistry 20:6929 (1981).PubMedCrossRefGoogle Scholar
  37. 37.
    W. Hillen, K. Schollmeier and C. Gatz, J. Mol. Biol. 172:185 (1984).PubMedCrossRefGoogle Scholar
  38. 38.
    C. Kleinschmidt, K. Tovar, W. Hillen and D. Porschke, J. Mol. Biol. submitted.Google Scholar
  39. 39.
    J.M. Schurr, Biophys. Chem. 9:413 (1979).PubMedCrossRefGoogle Scholar
  40. 40.
    R. Roemer, U. Schomburg, G. Kraus and G. Maass, Biochemistry 23:6132 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Dietmar Porschke
    • 1
  1. 1.Max-Planck-Institut für biophysikalische ChemieGöttingenGermany

Personalised recommendations