Mechanism and Specificity of two Restriction Enzymes, CauI and CauII, that Recognize Asymmetrical DNA Sequences

  • S. Paul Bennett
  • Stephen E. Halford
Part of the NATO ASI Series book series (volume 137)


Type II restriction endonucleases are enzymes that recognize specific nucleotide sequences on duplex DNA and cleave both strands of the duplex at fixed locations relative to their recognition sites (1). The only co-factor that they need is Mg2+, while type I and Type III restriction enzymes also need ATP and S-adenosyl methionine for maximal activity (2). Type I and type III enzymes also differ from type II by cleaving DNA at variable distances from their recognition sites (2). Hence, the study of type II restriction enzymes was initially motivated by their unique applications in the analysis of DNA and in the construction of recombinant DNA molecules (3). However, these enzymes also provide examples of DNA-protein interactions whose mechanisms are amenable to molecular analysis.


Base Pair Recognition Site Hydrogen Bond Acceptor Minor Groove Phosphodiester Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Modrich and R.J. Roberts, Type II Restriction and Modification Enzymes, in: “Nucleases”, S.M. Linn and R.J. Roberts, eds., Cold Spring Harbor, New York (1982).Google Scholar
  2. 2.
    T.A. Bickle, ATP-dependent Restriction Endonucleases, in: “Nucleases”, S.M. Linn and R.J. Roberts, eds., Cold Spring Harbor, New York (1982).Google Scholar
  3. 3.
    S.N. Cohen, A.C.Y. Chang, H.W. Boyer and R.B. Helling, Construction of biologically functional bacterial plasmid in vitro, Proc Natl. Acad. Sci. U.S.A. 70:3240 (1973).PubMedCrossRefGoogle Scholar
  4. 4.
    C. Kessler, T.S. Neumaier, and W. Wolfe, Recognition sequences of restriction endonucleases and methylases, Gene 33:1 (1985).PubMedCrossRefGoogle Scholar
  5. 5.
    N.L. Brown, C.A. Hutchinson, and M. Smith, The specific non-symmetrical sequence recognized by restriction endonuclease Mbo II, J.Mol. Biol. 140:143 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    E. Molemans, J. van Emmeloo, and W. Fiers, The sequence specificity of endonucleases Cau I and Cau II, Gene 18:93 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    S.E. Halford, How does Eco RI cleave its recognition site on DNA? Trends Biochem. Sci. 8:455 (1983).CrossRefGoogle Scholar
  8. 8.
    C.A. Frederick, J. Grable, M. Melia, C. Samudzi, L. Jen-Jacobson, B.C. Wang, P. Greene, H.W. Boyer, and J. Rosenberg, Kinked DNA in crystalline complex with Eco RI endonuclease, Nature 309:327 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    C.A. Brennan, M.D. Van Cleve, and R.I. Gumport, Effects of Base Analogue Substitutions on Cleavage by Eco RI Restriction Endonuclease, J. Biol. Chem. 261:7270 (1986).PubMedGoogle Scholar
  10. 10.
    P.A. Luke, and S.E. Halford, Solubility of the Eco RI restriction endonuclease and its purification from an over-producing strain, Gene 37:241 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    P.A. Luke, S.A. McCallum, and S.E. Halford, The Eco RV Restriction Endonuclease, in: “Gene Amplification and Analysis, vol 6”, J. Chirikjian, ed., Elsevier, New York. (in press).Google Scholar
  12. 12.
    L. Bougueleret, M.L. Tenchini, J. Botterman, and M. Zabeau, Overproduction of Eco RV endonuclease and methylase, Nucl. Acids. Res. 13:3823 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    A. D’Arcy, R.S. Brown, M. Zabeau, R.W. van Resandt, and F. Winkler, Purification and crystallization of the Eco RV restriction endonuclease, J. Biol. Chem. 260:1987 (1985).PubMedGoogle Scholar
  14. 14.
    A.H.A. Bingham, and J. Darbyshire, Isolation of two restriction endonucleases from Chloroflexus aurantiacus, Gene 18:87 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227:680 (1970).PubMedCrossRefGoogle Scholar
  16. 16.
    C.R. Merril, D. Goldman, and M.L. Van Keuren, Silver staining methods for polyacrylamide gel electrophoresis, Methods in Enzymology, 96:230 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    R.G. Martin and B.N. Ames, A Method for determining the sedimentation behaviour of enzymes: applications to protein mixtures, J. Biol. Chem. 236:1372 (1961).PubMedGoogle Scholar
  18. 18.
    P. Andrews, The gel-filtration behaviour of proteins reiated to their molecular weights over a wide range, Biochem. J. 96:595 (1965).PubMedGoogle Scholar
  19. 19.
    T.J. Kelly, and H.O. Smith, A restriction enzyme from Hemophilus influenza, J. Mol. Biol. 51:393 (1970).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Maxwell, and S.E. Halford, The Sal GI restriction endonuclease: mechanism of DNA cleavage, Biochem. J. 211:402 (1983).Google Scholar
  21. 21.
    S.E. Halford, and N.P. Johnson, Single turnover of the Eco RI restriction endonucleases, Biochem. J. 211:405 (1983).PubMedGoogle Scholar
  22. 22.
    S.E. Halford, N.P. Johnson, and J. Grinsted, The reactions of the Eco RI and other restriction endonucleases, Biochem. J. 179:353 (1979).PubMedGoogle Scholar
  23. 23.
    F. Sanger, A.R. Coulson, T. Friedman, G.N. Air, B.G. Barrell, N.L. Brown, J.C. Fiddes, C.A. Hutchinson, P.M. Slocombe, and M. Smith, The nucleotide sequence of bacteriophage ФX174. J. Mol. Biol. 125:225 (1978).PubMedCrossRefGoogle Scholar
  24. 24.
    N.L. Brown, and M. Smith, A general method for defining restriction enzyme cleavage and recognition sites, Methods in Enzymology 65:391 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    F. Sanger, S. Nicklen, and A.R. Coulson, DNA sequencing with chain terminating inhibitors, Proc. Natl. Acad. Sci. U.S.A. 74, 5463 (1977).PubMedCrossRefGoogle Scholar
  26. 26.
    O.G. Berg, R.B. Winter, and P.H. von Hippel, Diffusion-driven mechanism of protein translocation on nucleic acids, Biochemistry 20:6929 (1981).PubMedCrossRefGoogle Scholar
  27. 27.
    S.E. Halford, B.M. Lovelady, and S.A. McCallum, Relaxed specificity of the Eco RV restriction endonuclease, Gene 41:173 (1986).PubMedCrossRefGoogle Scholar
  28. 28.
    B. Polisky, P. Greene, D.E. Garfin, B.J. McCarty, H.M. Goodman, and H.W. Boyer, Specificity of substrate recognition by the Eco RI restriction endonuclease, Proc. Natl. Acad. Sci. U.S.A. 72:3310 (1975).PubMedCrossRefGoogle Scholar
  29. 29.
    J.M. Rosenberg, and P. Greene, Eco RI* specificity and hydrogen bonding, DNA 1:117 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    A. Oka, N. Nomura, M. Morita, H. Sugisaka, K. Sugimoto, and N. Takanami, Nucleotide sequence of small ColEI derivatives, Mol. Gen. Genet. 172:151 (1979).PubMedCrossRefGoogle Scholar
  31. 31.
    H.O. Smith, and M.L. Bernstiel, A simple method for DNA restriction site mapping, Nucl. Acids. Res. 3: 2387 (1976).PubMedCrossRefGoogle Scholar
  32. 32.
    D.M.J. Lilley, DNA supercoiling and DNA structure, Biochem. Soc. Trans, 14:211 (1986).PubMedGoogle Scholar
  33. 33.
    N.C. Seeman, J.M. Rosenberg, and A. Rich, Sequence-specific Recognition of double helical nucleic acids by proteins, Proc. Natl. Acad. Sci. U.S.A. 73:804 (1976).PubMedCrossRefGoogle Scholar
  34. 34.
    J.M. Rosenberg, H.W. Boyer and P. Green, The structure and function of the Eco RI restriction endonuclease, in: “Gene Amplification and Analysis, Vol 1”, J. Chirikjian, Ed., Elsevier, New York (1981).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • S. Paul Bennett
    • 1
  • Stephen E. Halford
    • 1
  1. 1.Department of Biochemistry, Unit of Molecular GeneticsUniversity of Bristol, University WalkBristolUK

Personalised recommendations