Advertisement

Structural Studies of Three DNA Binding Proteins: Catabolite Gene Activator Protein, Resolvase, and the Klenow Fragment of DNA Polymerase I

  • T. A. Steitz
  • L. Beese
  • B. Engelman
  • P. Freemont
  • J. Friedman
  • M. Sanderson
  • S. Schultz
  • G. Shields
  • J. Warwicker
Part of the NATO ASI Series book series (volume 137)

Abstract

We have been studying the crystal structure of three proteins that interact with DNA: the E. coli catabolite gene activator protein (CAP) whose structure was determined at 2.9 Å resolution (1,2) and is now refined to 2.5 Å resolution (3), the Klenow fragment of E. coli DNA polymerase whose structure has been determined from a 3.3 Å resolution electron density map (4) and gamma-delta resolvase, a site-specific recombination protein whose structure determination is still in progress (5,6,7). In addition to working out the mechanism by which each of these proteins carries out its biological function, we have been interested in ascertaining the ways in which these proteins are similar or differ in their manner of interaction with double-stranded DNA. Both CAP and resolvase contain small DNA binding domains which confer their DNA sequence specificity (1,6). In both cases the principles of DNA sequence specific interaction appear to be very similar: side-chains from protruding alpha-helices penetrate the DNA major groove and interact with the exposed edges of base pairs. DNA polymerase, on the other hand, contains a very large cleft which is able to nearly surround a double-stranded DNA substrate.

Keywords

Exonuclease Activity Klenow Fragment Base Pair Fragment Large Cleft Nucleoside Monophosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.B. McKay, and T.A. Steitz, Nature 290:744–749 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    D.B. McKay, I.T. Weber, and T.A. Steitz, J. Biol. Chem. 257:9518–9524 (1982).PubMedGoogle Scholar
  3. 3.
    I.T. Weber, and T.A. Steitz, J. Mol. Biol. 188:109–110 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    D.L. Ollis, P. Brick, R. Haralin, N.G. Xuong, and T.A. Steitz, Nature 313:762–766 (1985).PubMedCrossRefGoogle Scholar
  5. 5.
    P.C. Weber, D.L. Ollis, W.R. Bebrin, S.S. Abdel-Meguid and T.A. Steitz, J. Biol. Chem. 157:689–690 (1982).Google Scholar
  6. 6.
    S.S. Abdel-Meguid, N.D.F. Grindley, N. Smyth Templeton and T.A. Steitz, Proc. Natl. Acad. Sci USA 81:2001–2005 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    S.S. Abdel-Meguid, K. Murthy and T.A. Steitz, J. Biol. Chem., in press 1986.Google Scholar
  8. 8.
    B. de Crombrugghe, S. Busby, H. Buc, Science 224:831–838 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    E. Eilen, C. Pampeno, J.S. Krakow, Biochem. 17:2469–2480 (1978).CrossRefGoogle Scholar
  10. 10.
    T.A. Steitz, D.H. Ohlendorf, D.B. McKay, W.F. Anderson and B.W. Matthews, Proc. Natl. Acad. Sci. USA 79:3097–3100 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    J. Warwicker, D.L. Ollis, F.M. Richards and T.A. Steitz, J. Mol. Biol. 186:645–649 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    T.A. Steitz, I.T. Weber, D.L. Ollis and P. Brick, Cold Spring Harbor Symposium in Quantitative Biology 47:419–426 (1983).CrossRefGoogle Scholar
  13. 13.
    I.T. Weber, and T.A. Steitz, Proc. Natl. Acad. Sci. USA 81:3973–3977 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    H-M. Wu and D.M. Crothers, Nature 308:509 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Kornberg, “DNA Replicatiion,” Freeman, San Francisco (1980).Google Scholar
  16. 16.
    H. Klenow and I. Henningsen, Proc. Natl. Acad. Sci. USA 65:168–172 (1970).PubMedCrossRefGoogle Scholar
  17. 17.
    C.M. Joyce and N.D.F. Grindley, Proc. Natl. Acad. Sci. USA 80:1830–1834 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    C.M. Joyce, D.L. Ollis, J. Rush, T.A. Steitz, W.H. Konigsberg and N.D.F. Grindley, in: “Protein Structure, folding and Design”, D. Oxender, UCLA Symposia on Molecular and Cellular Biology, pp 197–205, Alan R. Liss, Inc., New York (1986).Google Scholar
  19. 19.
    P.S. Freemont, D.L. Ollis, T.A. Steitz and C.M. Joyce, Proteins 1:66–73 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • T. A. Steitz
    • 1
  • L. Beese
    • 1
  • B. Engelman
    • 1
  • P. Freemont
    • 1
  • J. Friedman
    • 1
  • M. Sanderson
    • 1
  • S. Schultz
    • 1
  • G. Shields
    • 1
  • J. Warwicker
    • 1
  1. 1.Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUSA

Personalised recommendations