Searching for the Code of Ideal Protein-DNA-Recognition

  • Norbert Lehming
  • Juergen Sartorius
  • Brigitte von Wilcken-Bergmann
  • Benno Mueller-Hill
Part of the NATO ASI Series book series (volume 137)


A system is described which allows testing of specific protein-DNA-interactions. The system consists of two mutually compatible plasmids carrying different origins of replication and resistance markers. One plasmid carries a lac I gene in which the DNA-recognizing domain has been replaced by synthetic DNA saturated with restriction sites. The other carries a lac P Z unit in which the natural operator has been deleted and replaced by a unique restriction site. Into this restriction site any operator can be cloned.

Our results suggest that: 1) The innermost seven base pairs of the lac operator can not be replaced without diminishing repression. 2) If Tyrl G1N2 of the recognition helix of lac repressor is substituted by Vall Ala2, the mutant repressor recognizes the mutant operator TGTAAGC GCTTACA better than the ideal or any other lac operator variant. Finally, a model is presented which may describe the binding of an alpha helix to the deep groove of B-DNA.


Unique Restriction Site Recognition Helix Catabolite Activator Protein Lambda Operator Catabolite Gene Activator Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, K., Beyreuther, K., Fanning, E., Geisler, N., Gronenborn, B., Klemm, A., Muller-Hill, B., Pfahl, M. and Schmitz, A., How lac repressor binds DNA, Nature 237:322 (1972).PubMedCrossRefGoogle Scholar
  2. 2.
    Ohlendorf, D. H., Anderson, W.F., Fisher, R.G., Takeda, Y. and Matthews, B. W., The molecular basis of DNA-protein recognition inferred from the structure of cro repressor, Nature 298:718 (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    Matthews, B.W., Ohlendorf, D. H., Anderson, W.F. and Takeda, Y., Structure of the DNA-binding region of lac repressor inferred from its homology with cro repressor, Proc.Natl.Acad.Sci.USA 79:1428 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    Sauer, R. T., Yocum, R. R., Doolittle, R. F., Lewis, M. and Pabo, C.O., Homology among DNA-bindig proteins suggests use of a conserved super-secondary structure, Nature 298:447 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    Gicquel-Sanzey, B. and Cossart, P., Homology between different procaryotic DNA-bindig regulatory proteins and between their sites of action, The EMBO J. 1:591 (1982).Google Scholar
  6. 6.
    Pabo, C. O. and Lewis, M., The operator-binding domain of λ repressor: structure and DNA recognition, Nature 298:443 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    McKay, D. B. and Steitz, T., Structure of catabolite activator protein at 2.9 A resolution suggests binding to left handed B-DNA, Nature 290:744 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    Schevitz, R. W., Otwinowski, Z., Joachimiak, A., Lawson, D.L. and Sigler, P. B., The three-dimensional structure of trp repressor, Nature 317:782 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    Youderian, P., Vershon, A., Bouvier, S., Sauer, R. T., Susskind, M., Changing the DNA-binding specificity of a repressor, Cell 35:777 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    Ebright, R.H., Cossart, P., Gicquel-Sanzey, B. and Beckwith, J., Mutations that alter the DNA sequence specific specificity of the catabolite gene activator protein of E.coli, Nature 311:232 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    Wharton, R. P., Brown, E. L. and Ptashne, M., Substituting an α-helix switches the sequence-specific DNA interaction of a repressor, Cell 38:361 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    Wharton, R. P. and Ptashne, M., Changing the binding specificity of a repressor by redesigning an α-helix, Nature 316:601 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    Muller-Hill, B., lac repressor and lac operator, Progr.Biophys.Molec.Biol. 30:227 (1975).CrossRefGoogle Scholar
  14. 14.
    Miller, J. H., The lac I gene: its role in lac operon control and its use as a genetic system, in, “The Operon” ed. by. J.H. Miller and W.S. Peznikoff, cold Spring Harbor (1978).Google Scholar
  15. 15.
    Gilbert, W., Majors, J. and Maxam, A., How proteins recognize DNA sequences, in: Organisation and expression of chromosomes, Dahlem Konferenzen, Berlin (1976).Google Scholar
  16. 16.
    Simons, A., Tils, D., Wilcken-Bergmann, B.v. and Muller-Hill, B., Possible ideal lac operator: Escherichia coli 1ac operator — like sequences from eukaryotic genomes lack the central G C pair, Proc.Natl.Acad.Sci.USA 81:1624 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    Sadler, J. R., Sasmor, H. and Betz, J. L., A perfectly symmetric 1ac operator binds the lac repressor very tightly, Proc.Natl.Acad.Sci.USA 80:6785 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    Besse, M., Wilcken-Bergmann, B.v. and Muller-Hill, B., Synthetic lac operator mediated repression through lac repressor when introduced upstream and downstream from 1ac promoter, The EMBO J. 5:1377 (1986).Google Scholar
  19. 19.
    Ebright, R. H., Evidence for a contact between glutamine-18 of lac repressor and base pair 7 of lac operator, Proc.Natl.Acad.Sci.USA 83:303 (1986).PubMedCrossRefGoogle Scholar
  20. 20.
    Wilcken-Bergmann, B.v. and Muller-Hill, B., Sequence of gal R gene indicates a common evolutionary origin of 1ac and gal repressor in Escherichia coli, Proc.Natl.Acad.Sci.USA 79:2427 (1982).CrossRefGoogle Scholar
  21. 21.
    Irani, M. H. Orosz, L., A control element within a structural gene. The gal operon of Escherichia coli, cell 32:783 (1983).PubMedCrossRefGoogle Scholar
  22. 22.
    Hochschi1d, A. and Ptashne, M., The recognition helices of λ repressor and λ cro make homologous contact with the operator, Cell 44, 925 (1986).PubMedCrossRefGoogle Scholar
  23. 23.
    McClarin, J.A., Frederick, C.A., Wang, B.C, Greene, P., Boyer, H.W., Grable, J., Rosenberg, J.M., Structure of the DNA-EcoRI endonuclease recognition complex at 3A resolution, Science, in the press.Google Scholar
  24. 24.
    Schlotmann, M. and Beyreuther, K., Degradation of the DNA-binding domain of wild type and I − d lac repressors in Escherichia coli, Eur. J. Biochem. 95:39 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Norbert Lehming
    • 1
  • Juergen Sartorius
    • 1
  • Brigitte von Wilcken-Bergmann
    • 1
  • Benno Mueller-Hill
    • 1
  1. 1.Institut fuer GenetikUniversitaet zu KoelnKoeln 41Germany

Personalised recommendations