Advertisement

Alteration of Insulin Receptor Binding and Protein Kinase Activity in Rat Liver and Placenta by ß-Naphthoflavone

  • Shoou-Lih Wang
  • Mohan K. Raizada
  • Kathleen T. Shiverick

Abstract

Insulin has been shown to be a significant fetal growth factor during late gestation.1,2 The development of insulin receptors in a number of fetal tissues is characterized by an increase in binding activity with gestational age.3–6 Human placenta is a rich source of insulin receptor which has been extensively characterized for its physico-chemical and protein kinase properties.7 Exposure to polyaromatic compounds during pregnancy has been associated with low birth weight in rodents,8,9 monkeys10 and humans.11 This laboratory has found that late feto-placental growth was markedly impaired after the administration of ß-naphthoflavone (ßNF) and other polyaromatic compounds during mid-gestation.9 Recent evidence suggests an interaction of polyaromatic compounds with growth factor receptors. In human pregnancy, exposure to halogenated aromatic compounds and cigarette smoke has been associated with a decrease in EGF receptor protein kinase activity in the placenta.12 TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) administered to newborn mice decreased EGF binding to liver plasma membranes, increased membrane protein kinase activities and elicited symptoms characteristic of excess EGF.13,14 At present, little is known about the interaction of polyaromatic compounds with other growth factor receptors in development.

Keywords

Insulin Receptor Protein Kinase Activity Fetal Liver Insulin Binding Liver Plasma Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B.Susa, K. L. McCormick, J. L. Widness, D. B. Singer, W. H. Oh, K. Adamsons, and R. Schwartz, Chronic hyperinsulinemia in the fetal rhesus monkey: effects on fetal growth and composition, Diabetes, 28: 1058 (1979).Google Scholar
  2. 2.
    J. M. Fletcher, J. Falconer, and J. M. Bassett, The relationship of body and placental weight to plasma levels of insulin and other hormones during development in fetal rabbits, Diabetologia 23: 124 (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    A. V. Thorsson and R. L. Hintz, Insulin receptor in the newborn, increase in receptor affinity and number, New England J. Medicine 297: 908 (1977).Google Scholar
  4. 4.
    A. Sandra and R. J. Przybylski, Ontogeny of insulin binding during chick skeletal myogenesis in vitro, Developmental Bioloav 68: 546 (1979).CrossRefGoogle Scholar
  5. 5.
    N. D. Neufeld, M. Scoli, and J. A. Kaplan, Ontogeny of the mammalian insulin receptor. Studies of human and rat fetal liver plasma membranes, Developmental Biology 78: 151 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    W. L. Lowe, F. T. Boyd, D. W. Clarke, M. K. Raizada, C. Hart, and D. Leroith, Development of brain insulin receptors: Structural and functional studies of insulin receptors from whole brain and primary cell cultures, Endocrinology 119: 25 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    T. W.Siegel, S. Ganguly, S. Jacobs, O. M. Rosen, and C. S. Rubin, Purification and properties of the human placental insulin receptor, J. Biol. Chem. 256: 9266 (1981).Google Scholar
  8. 8.
    S. Shum, S., N. M. Jensen, and D. W. Nebert, The murine Ah locus: In utero toxicity and teratogenesis associated with genetic differences in benzo(a)pyrene metabolism, Teratology 20: 365 (1979).Google Scholar
  9. 9.
    K. T. Shiverick, E. Ortiz, C. Fuhrman-Lane, and P. Crowley, Effects of ß-naphthoflavone and 3-methylcholanthrene administered to pregnant rats on steroid metabolism in the isolated basal zone of the placenta, J. Pharmacol. Exp. Therap. 210: 761 (1984).Google Scholar
  10. 10.
    J. R. Allen and D. A. Barsotti, The effects of transplacental and mammary movements of PCBs on infant rhesus monkeys, Toxicology 6: 331 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    T. K. Wong, R. B. Everson, and S. T. Hsu, Potent induction of human placental monooxygenase activity by previous dietary exposure to polychlorinated biphenyls and their thermal degradation products, Lancet 1: 721 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    G. I. Sunahara, T. Tiernan, R. M. Philpot, T. Wong, R. B. Everson, K. G. Nelson, and G. W. Lucier, Placental markers of exposure to toxic halogenated aromatics and cigarette smoke, Environmental Health Perspectives, in press (1987).Google Scholar
  13. 13.
    B. V. Madhukar, D. W. Brester, and F. Matsumura, Effects of in vivo administered 2,3,7,8-tetrachlorodibenzo-pdioxin on receptor binding of epidermal growth factor in the hepatic plasma membrane of rat, guinea pig, mouse and hamster, Proc Nat. Acad. Sci. 81: 7407 (1984).Google Scholar
  14. 14.
    D. W. Bombick, B. V. Madhukar, D. W. Brewster, and F. Matsumura, TCDD(2,3,7,8-tetrachlorodibenzo-p-dioxin) causes increases in protein kinases particularly protein kinase in the hepatic plasma membrane of the rat and the guinea pig, Biochem. Biophys. Res. Commun. 127:295 (1985).Google Scholar
  15. 15.
    S. J. Pilistine, A. C. Moses, and H. N. Munro, Insulin-like growth factor receptors in rat placenta membranes, Endocrinol. 115: 1060 (1984)CrossRefGoogle Scholar
  16. 16.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193: 265 (1951).Google Scholar
  17. 17.
    N. Freinkel, and C. J. Goodner, Carbohydrate metabolism in pregnancy. La: The metabolism of insulin by human placental tissue,. J. Clin. Invest. 39: 116 (1960).Google Scholar
  18. 18.
    G. Scatchard, Attraction of proteins for small molecules and ions, Ann. N.Y. Acad. Sci. 51: 660 (1949).Google Scholar
  19. 19.
    M. P. Czech, J. Massague, and P. F. Pilch, The insulin receptor: structural features, Trends Biochem. Sci. 6: 222 (1981).Google Scholar
  20. 20.
    J. A. Hedo, L. C. Harrison, and J. Roth, Binding of insulin receptors to lectins: Evidence for common carbohydrate determinants on several membrane receptors, Biochem. 20: 3385 (1981).CrossRefGoogle Scholar
  21. 21.
    L. Muglia and J. Locker, Extrapancreatic insulin gene expression in the fetal rat, Proc. Natl. Acad. Sci. USA 81: 3635 (1984).Google Scholar
  22. 22.
    Z. Josefsberg, B. I. Carr, D. Hwang, G. Barsegbian, C. Tomkinson, and A. Lev-Ran, Effect of 2-acetylaminofluorene on the binding of epidermal growth factor to microsomal and golgi fractions of rat liver cells, Cancer Res. 44: 2754 (1984).PubMedGoogle Scholar
  23. 23.
    A. Lev-Ran, Z. Josefsberg, B. I. Carr, G. Barseghian, and D. Hwang, Effects of the hepato-carcinogen 2-acetylaminofluorene on insulin binding to microsomal and golgi fractions of rat liver cells, J. Natl. Cancer Inst. 73: 505 (1984).Google Scholar
  24. 24.
    B. I. Carr, A. Roitman, D. L. Hwang, G. Barseghian, and A. Lev-Ran, Effects of diethylnitrosamine on hepatic receptor binding and autophosphorylation of epidermal growth factor and insulin in rats, J. Natl. Cancer Inst. 77: 219 (1986).Google Scholar
  25. 25.
    F. Matsumura, D. W. Brewster, B. V. Madhukar, and D. W. Bombick, Alteration of rat hepatic plasma membrane functions by 2,3,7,8-tetrachlorodibenzo-p-dioxin, Arch. Environ Contam. Toxicol. 13:509 (1984).Google Scholar
  26. 26.
    D. L. Hwang, A. Roitman, A. Lev-Ran, and B. I. Carr, Chronic treatment with phenobarbital decreases the expression of rat liver EGF and insulin receptors, Biochem. Biophys. Res. Comm. 135: 501, (1986).Google Scholar
  27. 27.
    V. Ivanovic and I. B. Weinstein, Benzo(a)pyrene and other inducers of cytochrome P1–450 inhibit binding of epidermal growth factor to cell surface receptors, Carcinogenesis 3: 505 (1982).PubMedCrossRefGoogle Scholar
  28. 28.
    S. O. Karenlampi, H. J. Eisen, Q. Hankinson, and D. W. Nebert, Effects of cytochrome P1–450 inducers on the cell-surface receptors for epidermal growth factor, insulin and phorbol 12,13-dibutyrate, J. Biol. Chem. 258:10378 (1973).Google Scholar
  29. 29.
    L. G. Hudson, W. A. Toscano, and W. F. Greenlee, Regulation of epidermal growth factor binding in a human keratinocyte cell line by 2,3,7,8-tetrachlorodibenzo-pdioxin, Tox. Appl. Pharm. 77: 251 (1985).Google Scholar
  30. 30.
    A. S. Salhab, M. O. James, S-L. Wang, and K. T. Shiverick, Positional metabolism of benzo(a)pyrene in rat placenta and maternal liver: comparison of induction effects, Drug. Metab. Disp. 14: 471 (1986).Google Scholar
  31. 31.
    E. Van Obberghen and S. Gammelltoft, Insulin receptors: structure and function, Experientia 42: 727 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    D. E. James, A. Zorzano, M. Boni-Schnetzler, R. A. Nemenoff, A. Powers, P. F. Pilch, and N.B. Ruderman, Intrinsic differences of insulin receptor kinase activity in red and white muscle, J. Biol. Chem. 261: 14939 (1986).Google Scholar
  33. 33.
    T. Kadowaki, M. Kasuga, Y. Akanum, D. Ezaki, and F. Takuku, Decreased autophosphorylation of the insulin receptor-kinase in streptozotocin-diabetic rats, ~. Biol. Chem. 259: 14208 (1984).Google Scholar
  34. 34.
    Y. LeMarchand-Brustel, T. Gremeau, R. Ballotti, and E. Van Obberghen, Insulin receptor tyrosine kinase is defective in skeletal muscle of insulin-resistant obese mice, Nature 315: 676 (1985).CrossRefGoogle Scholar
  35. 35.
    M. P. Czech, New perspectives on the mechanism of insulin action, Recent Prog. Hormone Res. 40: 347 (1984).Google Scholar
  36. 36.
    F. Grigorescu, J. S. Flier, and C. R. Kahn, Defect in insulin receptor phosphorylation in erythrocytes and fibroblasts associated with severe insulin resistance, J. Biol. Chem. 259: 15003 (1984).PubMedGoogle Scholar
  37. 37.
    G. E. Bollag, R. A. Roth, J. Beaudoin, D. Mochly-Rosen, and D. E. Koshland, Protein kinase C directly phosphorylates the insulin receptor in vitro and reduced its protein-tyrosine kinase activity, Proc. Natl. Acad. Sci. USA 83: 5822 (1986).PubMedCrossRefGoogle Scholar
  38. 38.
    K-T. Yu, D. K. Werth, I. H. Pastan, and M. P. Czech, src Kinase catalyzes the phosphorylation and activation of the insulin receptor kinase, J. Biol. Chem. 260: 5838 (1985).PubMedGoogle Scholar
  39. 39.
    C. B. Graves, R. D. Gale, F. P. Laurino, and J. M. McDonald, The insulin receptor and calmodulin: calmodulin enhances insulin-mediated receptor kinase activity and insulin stimulates phosphorylation of calmodulin, J. Biol. Chem. 261: 10429 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Shoou-Lih Wang
    • 1
  • Mohan K. Raizada
    • 1
  • Kathleen T. Shiverick
    • 1
  1. 1.Department of Pharmacology & Experimental Therapeutics and Department of PhysiologyUniversity of FloridaGainesvilleUSA

Personalised recommendations