Skip to main content

Abstract

There are two major mechanisms whereby hormones and other agonists alter phospholipid metabolism and generate intracellular signaling substances in their respective target tissues, viz., phospholipase activation and phospholipid synthesis. The most widely popularized mechanism involves the activation of a specific phospholipase C which hydrolyzes phosphatidylinositol-4,5-bisphosphate (PIP2).1 This hydrolysis generates inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), which, respectively, mobilize Ca++ from intracellular stores and activate protein kinase C2 and other possibly related kinases. This hydrolytic mechanism is probably operative in the action of most agonists which operate via cell surface receptors and use Ca++ as a major intracellular signaling substance. In addition to PIP2 hydrolysis, other types of phospholipase C may be activated, causing the hydrolysis of phosphatidylcholine (PC),3 phosphatidylinositol (PI) or a PI-glucosamine complex (PI-glycan).4 While it is clear that cell surface receptors are coupled to the PIP2 phospholipase C through GTP-binding proteins (which may or may not be inhibited by pertussis toxin), little is known about the mechanisms whereby receptors activate other forms of phospholipase C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Berridge, and R. F. Irvine, Inositol trisphosphate, a novel second messenger in cellular signal transduction Nature 312: 315 (1984).

    CAS  Google Scholar 

  2. Y. Nishizuka, Studies and perspectives of protein kinase C, Science 233: 305 (1986).

    Article  PubMed  CAS  Google Scholar 

  3. J. M. Besterman, V. Duronio, and P. Cuatrecasas, Rapid formation of diacyl- glycerol from phosphatidylcholine: a pathway for generation of a second messenger, Proc. Natl. Acad. Sci. USA 83: 6785 (1986).

    Article  PubMed  CAS  Google Scholar 

  4. A. R. Saltiel, J. A. Fox, P. Sherline, and P. Cuatrecasas, Insulin-stimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesterase, Science 233: 967 (1986).

    Article  PubMed  CAS  Google Scholar 

  5. R. V. Farese, De novo phospholipid synthesis as an intracellular mediator system, in: “Phospholipids and Cellular Regulation,” J. Kuo, ed., CRC Press, Boca Raton, FL (1985).

    Google Scholar 

  6. R. V. Farese, R. E. Larson, and M. A. Sabir, Insulin acutely increases phospholipids in the phosphatidate-inositide cycle in rat adipose tissue, J. Biol. Chem. 257: 4042 (1982).

    PubMed  CAS  Google Scholar 

  7. R. V. Farese, D. E. Barnes, J. S. Davis, M. L. Standaert, and R. J. Pollet, Effects of insulin and protein synthesis inhibitors on phospholipid metabolism, diacylglycerol levels, and pyruvate dehydrogenase activity in BC3H-1 cultured myocytes, J. Biol. Chem. 259: 7094 (1984).

    PubMed  CAS  Google Scholar 

  8. R. V. Farese, J. S. Davis, D. E. Barnes, M. L. Standaert, J. S. Babischkin, R. Hock, N. K. Rosic, and R. J. Pollet, The de novo phospholipid effect of insulin is associated with increases in diacylglycerol, but not inositol phosphates or cytosolic Ca2+, Biochem. J. 231: 269 (1985).

    CAS  Google Scholar 

  9. R. V. Farese, M. A. Sabir, and R. E. Larson, Comparison of changes in inositide and noninositide phospholipids during acute and prolonged adrenocorticotropic hormone treatment in vivo, Biochem. 21: 3318 (1982).

    Article  CAS  Google Scholar 

  10. R. V. Farese, M. A. Sabir, and R. E. Larson, Effects of adrenocorticotropin and cycloheximide on adrenal diglyceride kinase, Biochem. 20: 6047 (1981).

    Article  CAS  Google Scholar 

  11. S. R. Pennington, and B. R. Martin, Insulin-stimulated phosphoinositide metabolism in isolated fat cells, J. Biol. Chem. 260: 11039 (1985).

    PubMed  CAS  Google Scholar 

  12. M. I. Gonzatti-Haces, and J. A. Traugh, Cat+-independent activation of protease-activated kinase II by phospholipids/diolein and comparison with Caz+/phospholipid-dependent protein kinase, J. Biol. Chem. 261: 15266 (1986).

    PubMed  CAS  Google Scholar 

  13. S. Pontremoli, E. Melloni, M. Michetti, F. Salamino, B. Sparatore, O. Sacco, and B. L. Horecker, Differential mechanisms of translocation of protein kinase C to plasma membrane in activated human neutrophils, Biochem. Bionhvs. Res. Commun. 136: 228 (1986).

    Article  CAS  Google Scholar 

  14. A. R. Saltiel, P. Sherline, and J. A. Fox, Insulin-stimulated diacylglycerol production results from the hydrolysis of a novel phosphatidylinositol glycan, J. Biol. Chem. 262: 1116 (1987).

    PubMed  CAS  Google Scholar 

  15. J. Mato, and L. Jarett, personal communication.

    Google Scholar 

  16. B. R. Ganong, C. R. Loomis, Y. A. Hannun, and R. M. Bell, Specificity and mechanism of protein kinase C activation by sn-1,2-diacylglycerols, Proc. Natl. Acad. Sci. USA 83: 1184 (1986).

    Article  PubMed  CAS  Google Scholar 

  17. R. V. Farese, T. S. Konda, J. S. Davis, M. L. Standaert, R. J. Pollet, and D. R. Cooper, Insulin rapidly increases diacylglycerol by activating de novo phosphatidic acid synthesis, accepted for publication, Science (1987).

    Google Scholar 

  18. R. V. Farese, J. Y. Kuo, J. S. Babischkin, and J. S. Davis, Insulin provokes a transient activation of phospholipase C in the rat epididymal fat pad, J. Biol. Chem. 261: 8589 (1986).

    PubMed  CAS  Google Scholar 

  19. T. W. Honeyman, personal communication.

    Google Scholar 

  20. D. R. Cooper, H. Hernandez, J. Y. Kuo, and R. V. Farese, Insulin increases de novo synthesis of phosphatidic acid and diacylglycerol and protein kinase C activity in rat hepatocytes, submitted for publication.

    Google Scholar 

  21. D. R. Cooper, T. S. Konda, M. L. Standaert, J. S. Davis, R. J. Pollet, and R. V. Farese, Insulin increases membrane and cytosolic protein kinase C activity in BC3H-1 myocytes, in press, J. Biol. Chem. (1987).

    Google Scholar 

  22. D. H. Spach, R. A. Nemenoff, and P. J. Blackshear, Protein phosphorylation and protein kinase activities in BC3H-1 myocytes, J. Biol. Chem. 261: 12750 (1986).

    PubMed  CAS  Google Scholar 

  23. D. R. Cooper, C. M. Galaretta, L. F. Fanjul, L. Mojsilovic, M. L. Standaert, R. J. Pollet, and R. V. Farese, Insulin but not phorbol ester treatment increases phosphorylation of vinculin by protein kinase C in BC3H-1 myocytes, accepted for publication, FEBS Lett. (1987).

    Google Scholar 

  24. C. Cochet, C. Souvignet, M. Keramidas, and E. M. Chambaz, Altered catalytic properties of protein kinase C in phorbol ester treated cells, • Biochem. Biophvs. Res, Commun, 134: 10031 (1986).

    Google Scholar 

  25. D. Tabarini, J. Heinrich, and O. M. Rosen, Activation of S6 kinase activity in 3T3–L1 cells by insulin and phorbol ester, Proc. Natl. Acad. Sci. USA 82: 4369 (1985).

    Article  PubMed  CAS  Google Scholar 

  26. R. V. Farese, M. L. Standaert, D. E. Barnes, J. S. Davis, and R. J. Pollet, Phorbol ester provokes insulin-like effects on glucose transport, amino acid uptake, and pyruvate dehydrogenase activity in BC3H-1 cultured myocytes, Endocrinology 116: 2650 (1985).

    Article  PubMed  CAS  Google Scholar 

  27. G. Cherqui, M. Caron, D. Wicek, O. Lascols, J. Capeau, and J. Picard, Insulin stimulation of glucose metabolism in rat adipocytes: possible implication of protein kinase C, Endocrinology 118: 1759 (1986).

    Article  PubMed  CAS  Google Scholar 

  28. D. Kirsch, B. Obermaier, and H. U. Haring, Phorbol esters enhance basal D-glucose transport but inhibit insulin stimulation of D-glucose transport and insulin binding in isolated rat adipocytes, Biochim. Biophvs. Acta 128: 824 (1985).

    CAS  Google Scholar 

  29. J. S. Ramsdell, G. R. Pettit, and A. H. Tashjian, Jr., Three activators of protein kinase C, bryostatins, dioleins, and phorbol esters, show differing specificities of action of GH4 pituitary cells, J. Biol. Chem. 261: 17073 (1986).

    PubMed  CAS  Google Scholar 

  30. Z. Kiss, and Y. Luo, Phorbol ester and 1,2-diolein are not fully equivalent activators of protein kinase C in respect to phosphorylation of membrane proteins in vitro, FEBS Lett. 198: 203 (1986).

    Article  PubMed  CAS  Google Scholar 

  31. O. Shinohara, M. Knecht, and K. J. Catt, Differential actions of phorbol ester and diacylglycerol on inhibition of granulosa cell maturation, Biochem. Biophvs. Res. Commun. 133: 468 (1985).

    Article  CAS  Google Scholar 

  32. L. Coussens, P. J. Parker, L. Rhee, T. L. Yang-Feng, E. Chen, M. D. Waterfield, U. Francke, and A. Ullrich, Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signalling pathways, Science 233: 859 (1986).

    Article  PubMed  CAS  Google Scholar 

  33. K.-P. Huang, H. Nakabayashi, and F. L. Huang, Isozymic forms of rat brain Cat+-activated and phospholipid-dependent protein kinase, Proc. Natl. Acad. Sci. USA 83: 8535 (1986).

    Article  PubMed  CAS  Google Scholar 

  34. F. Vara, and E. Rozengurt, Stimulation of Na+/H+ antiport activity by epidermal growth factor and insulin occurs without activation of protein kinase C, Biochem. Biophvs. Res. Commun. 130: 646 (1985).

    Article  CAS  Google Scholar 

  35. K. Kitagawa, H. Nishino, and A. Iwashima, Effect of protein kinase C activation and Ca2+ mobilization on hexose transport in Swiss 3T3 cells, Biochim. Biophvs. Acta 887: 100 (1986).

    Article  CAS  Google Scholar 

  36. P. J. Blackshear, R. A. Nemenoff, J. B. Hovis, D. L. Halsey, D. J. Stumpo, and J.-K. Huang, Insulin action in normal and protein kinase C-deficient rat hepatoma cells. Effects on protein phosphorylation, protein kinase activities, and ornithine decarboxylase activities and messenger ribonucleic acid levels, Mol. Endo. 1: 44 (1987).

    CAS  Google Scholar 

  37. E. Karnieli, M. J. Zarnnowski, P. J. Hissin, I. A. Simpson, L. B. Salans, and S. W. Cushman, Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell, J. Biol. Chem. 256: 4772 (1981).

    PubMed  CAS  Google Scholar 

  38. K. Suzuki, and T. Kono, Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site, Proc. Natl. Acad. Sci. USA, 77: 2542 (1980).

    Article  PubMed  CAS  Google Scholar 

  39. J. Larner, G. Galasko, K. Cheng, A. A. DePaoli-Roach, L. Huang, P. Daggy, and J. Kellogg, Generation by insulin of a chemical mediator that controls protein phosphorylation and dephosphorylation, Science 206: 1408 (1979).

    Article  PubMed  CAS  Google Scholar 

  40. L. Jarett, E. H. A. Wong, S. L. Macaulay, and J. A. Smith, Insulin mediators from rat skeletal muscle have differential effects on insulin-sensitive pathways of intact adipocytes, Science 227: 533 (1985).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Farese, R.V., Cooper, D.R. (1987). The Role of Phospholipid Metabolism in Insulin Action. In: Raizada, M.K., Phillips, M.I., LeRoith, D. (eds) Insulin, Insulin-like Growth Factors, and Their Receptors in the Central Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5380-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5380-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5382-9

  • Online ISBN: 978-1-4684-5380-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics