Role of Insulin, Insulinlike Growth Factors, and Nerve Growth Factor in Neurite Formation

  • Douglas N. Ishii
  • Esperanza Recio-Pinto


The formation of proper connections between nerve cells and their targets is an important determinant of the behavioral repertoire of higher animals. Old connections may be broken and new ones established, adding to plasticity for response to a changing environment. Among the many and complex variables contributing to the structure of the neural network are the neurotrophic polypeptides. For decades nerve growth factor (NGF) stood alone as the only identified representative of this class. More recently, evidence has begun to emerge supporting the hypothesis (Recio-Pinto and Ishii, 1984; Ishii et al., 1985) that insulin and the insulinlike growth factors (IGFs) are members of a broad family of structurally related neuritogenic polypeptides. Here we review and extend the experimental observations supporting this hypothesis.


PC12 Cell Nerve Growth Factor Insulin Receptor Neurite Outgrowth Neurite Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizenman, Y., Weichsel, M.E. Jr., and de Vellis, J., 1986, Changes in insulin and transferrin requirements of pure brain neuronal cultures during embryonic development. Proc. Natl. Acad. Sci. USA, 83: 2263.PubMedCrossRefGoogle Scholar
  2. Anderson, R.G.W., Brown, M.S., Beisiegel, U., and Goldstein, J.L., 1982, Surface distribution and recycling of the low density lipoprotein receptor as visualized with antirecepter antibodies. J. Cell Biol., 93: 523.PubMedCrossRefGoogle Scholar
  3. Bell, G.I., Merryweather, J.P., Sanchez-Pescador, R., Stempien, M.M., Priestley, L., Scott, J. and Rall, L.B., 1984, Sequence of a cDNA clone encoding human preproinsulin-like growth factor II. Nature, 310: 775.PubMedCrossRefGoogle Scholar
  4. Bell, G.I., Gerhard, D.S., Fong, N.M., Sanchez-Pescador, R. and Rall, L.B., 1985, Isolation of the human insulin-like growth factor genes: Insulin-like growth factor II and insulin genes are contiguous. Proc. Natl. Acad. Sci. USA, 82: 6450.PubMedCrossRefGoogle Scholar
  5. Bhat, N.R., 1983, Insulin dependent neurite outgrowth in cultured embryonic mouse brain cells. Dev. Brain Res., 11: 315.CrossRefGoogle Scholar
  6. Blumberg, P. M., Declos, K. B., and Jaken, S., 1981, Tissue and species specificity for phorbol ester receptors. In: “Organ and species specificity in chemical carcino-genesis”, R. Langenbach, S. Nesnow, and J.M. Rice, eds., pp. 201–227, Plenum Publishing Corp., New York, New York.Google Scholar
  7. Blundell, T. L., and Humbel, R. E., 1980, Hormone families: pancreatic hormones and homologous growth factors. Nature, 287: 781.PubMedCrossRefGoogle Scholar
  8. Bradshaw, R. A., 1978, Nerve growth factor. Ann. Rev. Biochan., 47: 191.CrossRefGoogle Scholar
  9. Burns, R. G., Islam, K., and Chapman, R., 1984, The multiple phosphorylation of the microtubule-associated protein MAP2 controls the MAP2:tubulin interaction. Eur. J. Biochan., 141: 609.CrossRefGoogle Scholar
  10. Campenot, R. B., 1977, Local control of neurite development by nerve growth factor. Proc. Natl. Acad. Sci. USA, 74: 4516.PubMedCrossRefGoogle Scholar
  11. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chan., 257: 7847.Google Scholar
  12. Charlwood, K. A., Griffith, M. J., Lamont, M. D., Vernon, C. A.,and Wilcock, J. C., 1974, Effects of nerve growth factor from the venom of Vipera russelli on sensory and sympathetic ganglia from the embryonic chick in culture. J. Enbryol. Exp. Morphol., 32: 239.Google Scholar
  13. Clarke, D.W., Boyd, F.T. Jr., Kappy, M.S. and Raizada, M.K., 1984, Insulin binds to specific receptors and stimulates 2-deoxy-D-glucose uptake in cultured glial cells from rat brain. J. Biol. Chem., 259: 11672.PubMedGoogle Scholar
  14. Clarke, D.W., Boyd, F.T. Jr., Kappy, M.S. and Raizada, M.K., 1985, Insulin stimulates macramolecular synthesis in cultured glial cells from rat brain. Am. J. Physiol., 249: 484.Google Scholar
  15. Cohen, P., 1982, The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature, 296: 613.PubMedCrossRefGoogle Scholar
  16. Cohen, S., 1960, Purification of a nerve-growth promoting protein from the mouse salivary gland and its neuro-cytotoxic antiserum. Proc. Natl. Acad. Sci. USA, 46: 302.PubMedCrossRefGoogle Scholar
  17. Collins, F. and Dawson, A., 1983, An effect of nerve growth factor on parasympathetic neurite outgrowth. Proc. Natl. Acad. Sci. USA, 80: 2091.PubMedCrossRefGoogle Scholar
  18. Connolly, J.L., Green, S.A. and Greene, L.A., 1984, Pit formation and rapid changes in surface morphology of sympathetic neurons in response to nerve growth actor. J. Cell Biol., 90: 176.CrossRefGoogle Scholar
  19. Cuatrecasas, P., and Hollenberg, M. D., 1975, Binding of insulin and other hormones to non-receptor materials: saturability, specificity and apparent “negative cooperativity”. Biochem. Biophys. Res. Commun., 62: 31.Google Scholar
  20. De Pagter-Holthuizen, P., van Schaik, F.M.A., Verduijn, G.M., van Qimen, G.J.B., Bouma, B.N., Jansen, M. and Sussenbach, J.S., 1986, Organization of the human genes for insulin-like growth factors I and II. FEBS Lett., 195: 179.Google Scholar
  21. Drubin, D.G., Feinstein, S.C., Shooter, E.M. and Kirschner, M.W., 1985, Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J. Cell Biol., 101: 1799.PubMedCrossRefGoogle Scholar
  22. Dull, T. J., Gray, A., Hayflick, F. S., and Ullrich, A., 1984, Insulin-like growth factor II precursor gene organization in relation to the insulin gene family. Nature, 310: 777.PubMedCrossRefGoogle Scholar
  23. Ebina, Y., Ellis, L., Jarnagin, K., Edery, M., Graf, L., Clauser, E., Ou, J., Masiarz, F., Kan, Y. W., Goldfine, I. D., Roth, R. A., and Rutter, W. J., 1985, The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell, 40: 747.PubMedCrossRefGoogle Scholar
  24. End, D., Tolson, N., Hashimoto, S., and Guroff, G., 1983, Nerve growth factor-induced decrease in the cell-free phosphorylation of a soluble protein in PC12 cells. J. Biol. Chem., 258: 6549.PubMedGoogle Scholar
  25. Engberg, G., Carlquist, M., Jornball, H., Hall, K., 1984, The characterization of sanatanedia A, isolated by microcomputer-controlled chranatography, reveals an apparent identity to insulin-like growth factor I. Europ. J. Biochem., 143: 117.Google Scholar
  26. Fernyhough, P. and Ishii, D.N., 1987, Nerve growth factor modulates tubulin transcript levels in pheochranocytana PC12 cells. Neurochen. Res.Google Scholar
  27. Frazier, W.A., Angeletti, R.H. and Bradshaw, R.A., 1972, Nerve growth factor and insulin: Structural similarities indicate an evolutionary relationship reflected by physiological action. Science, 176: 482.PubMedCrossRefGoogle Scholar
  28. Froesch, E.R. and Zapf, J., 1985, Insulin-like growth factors and insulin: comparative aspects. Diabetologia, 28: 485.PubMedCrossRefGoogle Scholar
  29. Gamneltoft, S., Staun-Olsen, P., Ottensen, B. and Fahrenkrug, J., 1984, Insulin receptors in rat brain cortex. Kinetic evidence for a receptor subtype in the central nervous system. Peptides, 5: 937.CrossRefGoogle Scholar
  30. Goldstein, A., Lowney, L. I., and Pal, B. K., 1971, Stereospecific and non-specific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc. Natl. Acad. Sci. USA, 69: 1742.CrossRefGoogle Scholar
  31. Goodyer, C.G., De Stephano, L., Lai, W.H., Guyda, H.J., and Posner, B. I., 1984, Characterization of insulin-like growth factor receptors in rat anterior pituitary, hypothalamus, and brain. Endocrinology, 114: 1187.PubMedCrossRefGoogle Scholar
  32. Gundersen, R. W., and Barrett, J. N., 1980, Characterization of the turning response of dorsal root neurites toward nerve growth factor. J. Cell Biol., 87: 546.PubMedCrossRefGoogle Scholar
  33. Halegoua, S., and Patrick, J., 1980, Nerve growth factor mediates phosphorylation of specific proteins. Cell, 22: 571.PubMedCrossRefGoogle Scholar
  34. Hama, T. and Guroff, G., 1985, Distribution of Nsp100 and Nsp100 kinase, a nerve growth factor-sensitive phosphorylation system, in rat tissues. J. Neurochem., 45: 1279.PubMedCrossRefGoogle Scholar
  35. Hama, T., Huang, K.-P., and Guroff, G., 1986, Protein kinase C as a component of a nerve growth factor-sensitive phosphorylation system in PC12 cells. Proc. Natl. Acad. Sci. USA.Google Scholar
  36. Hamburger, V., and Oppenheim, R. W., 1982, Naturally occurring neuronal death in vertebrates. Neurosci. Commentaries, 1: 39.Google Scholar
  37. Hansson, H.A., Dahlin, L.B., Danielsen, N., Fryklund, L., Nachemson, A.K., Polleryd, P., Rozell, B., Skottner, A., Stemme, S. and Lundborg, G., 1986, Evidence indicating trophic importance of IGF-I in regenerating peripheral nerves. Acta Physiol. Scand., 126: 609.CrossRefGoogle Scholar
  38. Harper, G. P., and Thoenen, H., 1980, Nerve growth factor: biological significance, measurement, and distribution. J. Neurochem., 34: 5.PubMedCrossRefGoogle Scholar
  39. Havrankova, J., Roth, J., and Brownstein, M., 1978a, Insulin receptors are widely distributed in the central nervous system of the rat. Nature, 272: 827.CrossRefGoogle Scholar
  40. Heidenreich, K.A. and Brandenberg, D., 1986, Oligosaccharide heterogeneity of insulin receptors. Comparison of N-linked glycosylation of insulin receptors in adipocytes and brain. Endocrinology, 118: 1835.PubMedCrossRefGoogle Scholar
  41. Hendry, I.A. and Campbell, J., 1976, Morphametric analysis of rat superior cervical ganglion after axotomy and nerve growth factor treatment. J. Neurocytol., 5: 351.PubMedCrossRefGoogle Scholar
  42. Hendry, I. A., Stockel, K., Thoenen, H., and Iversen, L. L., 1974, The retrograde axonal transport of nerve growth factor. Brain Res., 68: 103.PubMedCrossRefGoogle Scholar
  43. Heumann, R. and Thoenen, H., 1986, Comparison between the time course of changes in nerve growth factor protein levels and those of its messenger RNA in the cultured rat iris. J. Biol. Chem., 261: 9246.PubMedGoogle Scholar
  44. Huck, S., 1982, Serum-free medium for cultures of the postnatal mouse cerebellum: Only insulin is essential. Brain Res. Bulletin, 10: 667.Google Scholar
  45. Hudson, P., Haley, J., John, M., Cronk, M., Crawford, R., Haralambidis, J., Tregear, G., Shine, J. and Niall, H., 1983, Structure of a genanic clone encoding biologically active human relaxin. Nature, 301: 628.PubMedCrossRefGoogle Scholar
  46. Ishii, D. N., 1978, Effect of tumor promoters on the response of cultured embryonic chick ganglia to nerve growth factor. Cancer Res., 38: 3886.PubMedGoogle Scholar
  47. Ishii, D. N., 1982, Inhibition of iodinated nerve growth factor binding by the suspected tumor promoters saccharin and cyclamate. J. Natl. Cancer Inst., 68: 299.PubMedGoogle Scholar
  48. Ishii, D. N., Recio-Pinto, E., Spinelli, W., Mill, J. F., and Sonnenfeld, K.H., 1985, Neurite formation modulated by nerve growth factor, insulin, and tumor promoter receptors. Internat. J. Neurosci., 26: 109.Google Scholar
  49. Ishii, D.N. and Mill, J.F., 1987, Molecular mechanisms of neurite formation stimulated by insulinlike factors and nerve growth factor. Curr. Topics Membrane Res.Google Scholar
  50. Iwao, S., 1968, Some effect of grouping in lepidopterous insects. Colloques. int. Cent. natn. Rech. scient., 173: 185.Google Scholar
  51. Jacobs, S., Hazum, E., Schechter, Y., and Cuatrecasas, P., 1979, Insulin receptor: covalent labeling and identification of subunits. Proc. Natl. Acad. Sci. USA, 76: 4918.PubMedCrossRefGoogle Scholar
  52. Jacobs, S., Kull, F. C., Earp, H. S., Svoboda, M. E., van Wyk, J. J., and Cuatrecasas, P., 1983, Sanatomedin-C stimulates the phosphorylation of the beta subunit of its own receptor. J. Biol. Chen., 258: 9581.Google Scholar
  53. James, R., Niall, H., Kwok, S. and Bryant-Greenwood, G., 1977, Primary structure of porcine relaxin: homology with insulin and related growth factors. Nature, 267: 544.PubMedCrossRefGoogle Scholar
  54. Jansen, M., van Schaik, F.M., Ricker, A.T., Bullock, B., Woods, D.E., Gabbay, K.H., Nussbaum, A.L., Sussenbach, J.S., and Van den Brande, J.L., 1983, Sequence of cDNA encoding human insulin-like growth factor I precursor. Nature, 306: 609.PubMedCrossRefGoogle Scholar
  55. Johnson, E. M., Gorin, P. D., Brandeis, L. D., and Pearson, J., 1980, Dorsal root ganglion’neurons are destroyed by exposure in utero to maternal antibody to nerve growth factor. Science, 210: 916.PubMedCrossRefGoogle Scholar
  56. Kadowaki, T., Fujita-Yamaguchi, Y., Nishida, E., Takaku, F., Akiyama, T., Kathuria, S., Akanuma, Y., and Kasuga, M., 1985, Phosphorylation of tubulin and microtubule-associated proteins by the purified insulin receptor kinase. J. Biol. Chem., 260: 4016.PubMedGoogle Scholar
  57. Kasuga, M., Van Obberghens, E., Nissley, S. P., and Rechler, M. M., 1981, Demonstration of two subtypes of insulin-like growth factor receptors by affinity cross-linking. J. Biol. Chan., 256: 5305.Google Scholar
  58. Kasuga, M., Karlsson, F. A., and Kahn, C. R., 1982, Insulin stimulates phosphorylation of the 95,000-Talton subunit of its own receptor. Science, 215: 185.PubMedCrossRefGoogle Scholar
  59. Kessler, J.A., Spray, D.C., Saez, J.C. and Bennett, M.V.L., 1984, Determination of synaptic phenotype: Insulin and cAMP independently initiate development of electrotonic coupling between cultured sympathetic neurons. Proc. Natl. Acad. Sci. USA, 81: 6235.PubMedCrossRefGoogle Scholar
  60. Klapper, D.G., Svoboda, M.E., van Wyk, J.J., 1983, Sequence analysis of somatomedin C: Confirmation of identity with insulin-like growth factor I. Endocrinology, 112: 2215.PubMedCrossRefGoogle Scholar
  61. Lenoir, D. and Honegger, P., 1983, Insulin-like growth factor I (IGF I) stimulates DNA synthesis in fetal rat brain cell cultures. Dev. Brain Res., 7: 205.CrossRefGoogle Scholar
  62. Levi-Montalcini, R., 1966, The nerve growth factor: Its mode of action on sensory and sympathetic nerve cells. Harvey Lect., 60: 217.PubMedGoogle Scholar
  63. Levi-Montalcini, R. and Angeletti, P. U., 1968, Nerve growth Factor. Physiol. Rev., 48: 534.Google Scholar
  64. Levi-Montalcini, R., Meyer, H., and Hamburger, V., 1954, In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res., 14: 49.PubMedGoogle Scholar
  65. Luckenbille-Edds, L., Van Horn, C., and Greene, L.A., 1979, Fine structure of initial outgrowth processes induced in a pheochromocytana cell line (PC12) by nerve growth factor. J. Neurocytol. 8: 493.CrossRefGoogle Scholar
  66. Marquardt, H., Todaro, G. J., Henderson, L. E., and Oroszlan, S., 1981, Purification and primary structure of a polypeptide with multiplication stimulating activity from rat liver cell cultures. J. Biol. Chem., 256: 6859.PubMedGoogle Scholar
  67. Massague, J., and Czech, M. P., 1982, The subunit structures of two distinct receptors for insulin-like growth factors I and II and their relationship to the insulin receptor. J. Biol. Chen., 257: 5038.Google Scholar
  68. Matsumoto, S., Isogai, A. and Suzuki, A., 1985, N-terminal amino acid sequence of an insect neurohormone, melanization and reddish coloration hormone (MRCH): heterogeneity and sequence horology with human insulin-like growth factor II. FEBS Lett., 189: 115.PubMedCrossRefGoogle Scholar
  69. Mattsson, M.E.K., Enberg, G., Ruusala, A-I., Hall, K. and Pahlman, S., 1986, Mitogenic response of human SH-SY5Y neuroblastana cells to insulin-like growth factor I and II is dependent on the stage of differentiation. J. Cell Biol., 102: 1949.PubMedCrossRefGoogle Scholar
  70. Menesini-Chen, M.G.M., Chen, J.S., and Levi-Montalcini, R., 1978, Sympathetic nerve fibers ingrowth in the central nervous system of neonatal rodent upon intracerebral NGF injections. Arch. Ital. Biol., 116: 53.Google Scholar
  71. Mill, J. F., Chao, M. V., and Ishii, D. N., 1985, Insulin, insulin-like growth factor II, and nerve growth factor effects on tubulin mRNA levels and neurite formation. Proc. Natl. Acad. Sci. USA, 82: 7126.PubMedCrossRefGoogle Scholar
  72. Mobley, W. C., Server, A. C., Ishii, D. N., Riopelle, R. J., and Shooter, E. M., 1977, Nerve growth factor. New Eng. J. Med., 297: 1096.Google Scholar
  73. Nagasawa, H., Kataoka, H., Isogai, A., Tamura, S., Suzuki, A., Mizoguchi, A., Fukiwara, Y., Suzuki, A., Takahashi, S.Y., and Ishizaki, H., 1986, Amino acid sequence of a prothoracicotropic hormone of the silkworm Bombyx mori. Proc. Natl. Acad. Sci. USA, 83: 5840.PubMedCrossRefGoogle Scholar
  74. Nakanishi, N., and Guroff, G., 1985, Nerve growth factor-induced increase in the cell-free phosphorylation of a nuclear protein in PC12 cells. J. Biol. Chan., 260: 7791.Google Scholar
  75. Niedel, J. E., Kuhn, L. J., and Vanderbark, G. R., 1983, Phorbol diester receptor copurifies with protein kinase C. Proc. Natl. Acad. Sci. USA, 80: 36.CrossRefGoogle Scholar
  76. Ogura, N., 1975, Hormonal control of larval coloration in the armyworm, Leucania separata. J. Insect Physiol., 21: 559.CrossRefGoogle Scholar
  77. Oka, Y. and Czech, M.P., 1986, The type II insulin-like growth factor receptor is internalized and recycles in the absence of ligand. J. Biol. Chem. 261: 9090.PubMedGoogle Scholar
  78. Olender, E. J., and Stach, R. W., 1980, Sequestration of 125I-labeled nerve growth factor by sympathetic neurons. J. Biol. Chen., 255: 9338.Google Scholar
  79. Ota, A., Pruss, B.M., Shemer, J., Lowe, W.L., Shepard, A. and LeRoith, D., 1986, Characterization of the insulin receptors in neuroblastana cell lines. Soc. Neurosci. Abs., 12: 371.Google Scholar
  80. Pacold, S. T., and Blackard, W. G., 1979, Central nervous system insulin receptors in normal and diabetic rats. Endocrinology, 105: 1452.PubMedCrossRefGoogle Scholar
  81. Pilch, P.F., Rubin, J.B. and Shia, M.A., 1983, Insulin-like growth factor dependent protein kinase activity. Fed. Proc., 42: 2252a.Google Scholar
  82. Posner, B. I., Kelly, P. A., Shiu, R. P. C., and Friesen, H. G., 1974, Studies of insulin, growth hormone and prolactin binding: tissue distribution, species variation and characterization. Endocrinology, 95: 521.PubMedCrossRefGoogle Scholar
  83. Puro, D. G., and Agardh, E., 1984, Insulin-mediated regulation of neuronal maturation. Science, 225: 1170.PubMedCrossRefGoogle Scholar
  84. Puro, D. G., Battelle, B. -A., and Hansetann, K. E., 1982, Development of cholinergic neurons of the rat retina. Dev. Biol., 91: 138.Google Scholar
  85. Raizada, M.K., Yang, F.W. and Fellows, R.E., 1980, Binding of 125I-insulin to specific receptors and stimulation of nucleotide incorporation in cells cultured from rat brain. Brain Res., 200: 389.PubMedCrossRefGoogle Scholar
  86. Raizada, M. K., Stamler, J. F., Quinlan, J. T., Landas, S., and Phillips, M. I., 1982, Identification of insulin receptor-containing cells in primary cultures of rat brain. Cell. Molec. Neurobio., 2: 47.Google Scholar
  87. Rechler, M.M., Zapf, J., Nissley, S.P., Froesch, E.R., Moses A.C., Podskalny, J.M., Schilling, E.E., and Humbel, R.E., 1980, Interactions of insulin-like growth factors I and II and multiplication-stimulating activity with receptors and serum carrier proteins. Endocrinology, 107: 1451.PubMedCrossRefGoogle Scholar
  88. Rechler, M. M., Kasuga, M., Sasaki, N., de Vroede, M. A., Romanus, J. A. and Nissley, S. P., 1983, Properties of insulin-like growth factor receptor subtypes. In: “Insulin-like growth factors/SomatoEnedins: Basic chemistry, biology, and clinical importance”, E.M. Spencer, ed., pp. 459–490. W. de Gruyter, New York, NY.Google Scholar
  89. Recio-Pinto, E., and Ishii, D. N., 1984, Effects of insulin, insulinlike growth factor-II, and nerve growth factor on neurite outgrowth in cultured human neuroblastona cells. Brain Res., 302: 323.PubMedCrossRefGoogle Scholar
  90. Recio-Pinto, E., Lang, F. F., and Ishii, D. N., 1984, Insulin and insulin-like growth factor II permit nerve growth factor binding and the neurite formation response in cultured human neuroblastama cells. Proc. Natl. Acad. Sci. USA, 81: 2562.PubMedCrossRefGoogle Scholar
  91. Recio-Pinto, E., Rechler, M. M. and Ishii, D. N., 1986, Effects of Insulin, Insulinlike Growth Factor-II, and Nerve Growth Factor on Neurite Formation and Survival in Cultured Sympathetic and Sensory Neurons. J. Neurosci., 6: 1211.PubMedGoogle Scholar
  92. Recio-Pinto, E., Ishii, D.N. and Rechler, M.M., 1987, Insulin and insulinlike growth factor receptors regulating neurite formation in cultured human neuroblastoma cells. J. Neurosci. Res., Submitted.Google Scholar
  93. Rinderknecht, E., and Humbel, R. E., 1978a, Primary structure of human insulin-like growth factor-II. Fed. Eur. Biochen. Soc. Lett., 89: 283.CrossRefGoogle Scholar
  94. Rinderknecht, E., and Humbel, R. E., 1978b, The amino acid sequence of human IGF-I and its structural homology with proinsulin. J. Biol. Chen., 253: 2769.Google Scholar
  95. Roger, L.J. and Fellows, R.E., 1980, Stimulation of ornithine decarboxylase activity by insulin in developing rat brain. Endocrinology, 106: 619.PubMedCrossRefGoogle Scholar
  96. Rosenfeld, R. G., Ceda, G., Wilson, D. M., Dollar, L. A., and Hoffman, A. R., 1984, Characterization of high affinity receptors for insulin-like growth factors I and II in rat anterior pituitary cells. Endocrinology, 114: 1571.PubMedCrossRefGoogle Scholar
  97. Rubin, J.S., Mariz, I., Jacobs, J.W., Daughaday, W.H. and Bradshaw, R.A., 1982, Isolation and partial sequence analysis of rat basic samatcmedin. Endocrinol., 110: 734.CrossRefGoogle Scholar
  98. Sanger, F., Thompson, E.O.P., and Kital, R., 1955, The amide groups of insulin. Biochen. J., 59: 509.Google Scholar
  99. Sara, V.R., Hall, K., Misaki, M., Fryklund, L., Christensen, N. and Wetterberg, L., 1983, Ontogenesis of sanatomedin and insulin receptors in the human fetus. J. Clin. Invest., 71: 1084.PubMedCrossRefGoogle Scholar
  100. Sasaki, N., Rees-Jones, R.W., Zick, Y., Nissley, S.P. and Rechler, M.M., 1985, Characterization of insulin-like growth factor I-stimulated tyrosine kinase activity associated with the beta-subunit of type I insulin-like growth factor receptor of rat liver cells. J. Biol. Chem., 260: 9793.PubMedGoogle Scholar
  101. Schwabe, C., and McDonald, J.K., 1977, Primary structure of the B-chain of porcine relaxin. Biochem. biophys. Res. carmun., 75: 503.Google Scholar
  102. Scott, J., Selby, M., Urdea, M., Quiroga, M., Bell, G.I., and Rutter, W.J., 1983, Isolation and nucleotide sequence of a cDNA encoding the precursor of mouse nerve growth factor. Nature, 302: 538.PubMedCrossRefGoogle Scholar
  103. Seeley, P.J. and Greene, L.A., 1983, Short-latency local actions of nerve growth factor at the growth cone. Proc. Natl. Acad. Sci. USA, 80: 2789.PubMedCrossRefGoogle Scholar
  104. Shelton, D. L. and Reichardt, L. F., 1984, Expression of the beta-nerve growth factor gene correlates with the density of sympathetic innervation in effector organs. Proc. Natl. Acad. Sci. USA, 81: 7951.PubMedCrossRefGoogle Scholar
  105. Shelton, D.L. and Reichardt, L.F., 1986, Studies on the regulation of beta-nerve growth factor gene expression in the rat iris: The level of mRNA-encoding nerve growth factor is increased in irises placed in explant cultures in vitro, but not in irises deprived of sensory or sympathetic innervation in vivo. J. Cell Biol., 102: 1940.PubMedCrossRefGoogle Scholar
  106. Shooter, E. M., Yanker, B. A., Landreth, G. E., and Sutter, A., 1981, Biosynthesis and mechanism of action of nerve growth factor. Recent Prog. Horm. Res., 37: 417.Google Scholar
  107. Snyder, E.Y. and Kim, S.U., 1980, Insulin: Is it a nerve survival factor? Brain Res., 196: 565.PubMedCrossRefGoogle Scholar
  108. Soares, M. B., Ishii, D. N., and Efstratiadis, A., 1985, Developmental and tissue specific expression of a family of transcripts related to rat insulin-like growth factor II mRNA. Nuc. Acids Res., 13: 1119.CrossRefGoogle Scholar
  109. Soares, M.B., Schon, E., Henderson, A., Karathansis, S.K., Cate, R., Zeitlin, S., Chirgwin, J. and Efstratiadis, A., 1986, RNA-mediated gene duplication: The rat preproinsulin 1 gene is a functional retroposon. Mol. Cell. Biol., 5: 2090.Google Scholar
  110. Soares, M.B, Turken, A., Ishii, D.N., Mills, L., Episkopou, V., Cotter, S., Zeitlin, S. and Efstratiadis, A., 1987, The rat insulin-like growth factor II gene: A single gene with two promoters expressing a multitranscript family.Google Scholar
  111. Sonnenfeld, K. H., and Ishii, D. N., 1982, Nerve growth factor effects and receptors in cultured human neuroblastana cell lines. J. Neurosci. Res., 8: 375.PubMedCrossRefGoogle Scholar
  112. Sonnenfeld, K. H., and Ishii, D. N., 1985, Fast and slow nerve growth factor binding sites in human neuroblastana and rat pheochranocytoma cell lines: Relationship of sites to each other and to neurite formation. J. Neurosci., 5: 1717.PubMedGoogle Scholar
  113. Spinelli, W., and Ishii, D. N., 1983, Tumor promoter receptors regulating neurite formation in cultured human neuroblastana cells. Cancer Res., 43: 4119.PubMedGoogle Scholar
  114. Spinelli, W., Sonnenfeld, K. H., and Ishii, D. N., 1982, Paradoxical effect of phorbol ester tumor promoters on neurite outgrowth in cultured human neuroblastana cells. Cancer Res., 42: 5067.PubMedGoogle Scholar
  115. Stephenson, R. P., 1956, A modification of receptor theory. Brit. J. Pharmacol. Chemother., 11: 379.Google Scholar
  116. Sutter, A., Riopelle, R. J., Harris-Warrick, R. M., and Shooter, E. M., 1979, Nerve growth factor receptors: Characterization of two distinct classes of binding sites on chick embryo sensory ganglia cells. J. Biol. Chen., 254: 4972.Google Scholar
  117. Ullrich, A., Shine, J., Chirgwin, J., Pictet, R., Tischer, E., Rutter, W.J. and Goodman, H.M., 1977, Rat insulin genes: Construction of plasmids containing the coding sequences. Science, 196: 1313.PubMedCrossRefGoogle Scholar
  118. Ullrich, A., Gray, A., Berman, C. and Dull, T. J., 1983, Human beta-nerve growth factor gene sequence highly homologous to that of mouse. Nature, 303: 821.PubMedCrossRefGoogle Scholar
  119. Van Houten, M. and Posner, B.I., 1979, Insulin binds to brain blood vessels in vivo. Nature, 282: 623.PubMedCrossRefGoogle Scholar
  120. Van Schravendijk, C.F.H., Hooghe-Peters, E.L., DeMeyts, P. and Pipeleers, D.G., 1984, Identification and characterization of insulin receptors on foetal-mouse brain cortical cells. Biochem. J., 220: 165.PubMedGoogle Scholar
  121. Villa-Konaroff, L., Efstratiadis, A., Broome, S., Lomedico, P., Tizard, R., Naber, S.P., Chick, W.L. and Gilbert, W., 1978, A bacterial clone synthesizing proinsulin. Proc. Natl. Acad. Sci. USA, 75: 3727.CrossRefGoogle Scholar
  122. Vinores, S. and Guroff, G., 1980, Nerve growth factor: mechanism of action. Ann. Rev. Biophys. Bioeng., 9: 223.CrossRefGoogle Scholar
  123. Whitfield, H. J., Bruni, C. B., Frunzio, R., Terrell, J. E., Nissley, S. P., and Rechler, M. M., 1984, Isolation of a cDNA clone encoding rat insulin-like growth factor-II precursor. Nature, 312: 277.PubMedCrossRefGoogle Scholar
  124. Widmer, U., Zapf, J. and Froesch, E.R., 1984, Insulin-like growth factors and their carrier protein in cerebrospinal fluid of normals and acronegalics. In: “Seventh International Congress of Endocrinology”, p1413, Quebec, Canada.Google Scholar
  125. Wolinsky, E.J., Patterson, P.H. and Willard, A.L., 1985, Insulin promotes electrical coupling between cultured sympathetic neurons. J. Neurosci., 5: 1675.PubMedGoogle Scholar
  126. Yamada, K. M., Spooner, B. S., and Wessells, N. K., 1971, Ultrastructure and function of growth cones and axons of cultured nerve cells. J. Cell Biol., 49: 614.PubMedCrossRefGoogle Scholar
  127. Yang, J.W. and Fellows, R.E., 1980, Characterization of insulin stimulation of the incorporation of radioactive precursors into macromolecules in cultured rat brain cells. Endocrinology, 107: 1717.PubMedCrossRefGoogle Scholar
  128. Yip, C.C., Moule, M.L. and Yeung, C.W.T., 1980, Characterization of insulin receptor subunits in brain and other tissues by photoaffinity labeling. Biochem. Biophys. Res. Ccnmun., 96: 71.Google Scholar
  129. Yu, M. W., Tolson, N. W., and Guroff, G., 1980, Increased phosphorylation of specific nuclear proteins in superior cervical ganglia and PC12 cells in response to nerve growth factor. J. Biol. Chan., 255: 10481.Google Scholar
  130. Zapf, J., Schoenle, E. and Froesch, E.R., 1978, Insulin-like growth factors I and II. Some biological actions and receptor binding characteristics of two purified constituents of nonsuppressible insulin-like activity of human serum. Europ. J. Biochem., 87: 285.Google Scholar
  131. Zimmermann, A. and Sutter, A., 1983, Beta-nerve growth factor (ß-NGF) receptors on glial cells. Cell-cell interaction between neurons and Schwann cells in cultures of chick sensory ganglia. EMBO J., 2: 879.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Douglas N. Ishii
    • 1
  • Esperanza Recio-Pinto
    • 2
  1. 1.Departments of Physiology and BiochemistryColorado State UniversityFort CollinsUSA
  2. 2.Department of Physiology and AnesthesiologyCornell University Medical CenterNew YorkUSA

Personalised recommendations