The presence of insulin in the nervous system has generated considerable interest since its discovery in insects less than a decade ago (for a review, see Hendricks et al., 1983). Since then, insulin or insulin-like material has been detected in numerous species, both vertebrate and invertebrate, as well as in bacteria and fungi (LeRoith et al., 1980; LeRoith et al., 1981). Accordingly, this has prompted the search in these tissues and cells for an insulin specific cellular target, namely the insulin receptor. Insulin receptors appear on nearly all vertebrate and many invertebrate cells, most of which have not previously been considered insulin-responsive. This has raised the possibility that insulin may elicit unique actions in these cells, distinct from its known effects on liver, muscle and fat. For example, insulin is essential for the in vitro growth and maintenance of all cell lines examined to date (Barnes and Sato, 1980). This may be particularly relevant when considering the role of insulin in the nervous system, since few of insulin’s classical effects have been demonstrated in this tissue. Current thinking has led to the suggestion that insulin may have neuromodulatory actions in the central nervous system (CNS) (Boyd et al., 1985). Alternatively, insulin might play two different but not mutually exclusive roles in the nervous system: 1.) neuromodulatory, and 2.) promotion of growth and differentiation in the embryo and newborn brain. Few studies have examined the ontogeny of insulin receptors in the embryonic brain and little is known concerning the importance of insulin in the central nervous system.


Sialic Acid Insulin Receptor Wheat Germ Agglutinin Insulin Binding Embryonic Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, D. and Sato, G., 1980, Cell, 22: 649–655.PubMedCrossRefGoogle Scholar
  2. Birch, N.P., Christie, D.L., and Renwick, A.G.C., 1984, Biochem. J., 218: 19–27.PubMedGoogle Scholar
  3. Boyd, F.T. and Raizada, M.K., 1983, Am. J. Phvsiol., 245: C283–287.Google Scholar
  4. Boyd, F.T., Clarke, D.W., Muther, T.F., and Raizada, M.K., 1985, J. Biol. Chem., 260: 15880–15884.PubMedGoogle Scholar
  5. Brennan, W.A. Jr., 1987, J. Biol. Chem., (submitted).Google Scholar
  6. Carey, E.M., 1982, In: Biochemical Development of the Fetus and Neonate, C.T. Jones, ed., Elsevier, pp 297–298.Google Scholar
  7. Clarke, D.W., Boyd, F.T.,,Kappy, M.S., and Raizada, M.K., 1984, J. Biol. Chem., 259: 11672–11675.Google Scholar
  8. Cohen, N.M. and Turner, R.C., 1972, Biol. Neonate, 21: 107–111.PubMedCrossRefGoogle Scholar
  9. Dawson, G., 1978, In: Mammalian Glvcoproteins, Glvcolipids and Proteoglvcans, M.I. Horowitz and W. Pigonan, eds., Academic Press, New York, pp 285–325.Google Scholar
  10. Devaskar, S.U. and Holekamp, N., 1984, Biochem. Biophvs. Res. Comm., 120: 359–367.CrossRefGoogle Scholar
  11. Devaskar, S.U. and Karycki, L., 1985, Biochem. Biophvs. Res. Comm., 133: 670–679.CrossRefGoogle Scholar
  12. Edelman, G., 1985, Ann. Rev. Biochem., 54: 135–169.PubMedCrossRefGoogle Scholar
  13. Eng, J. and Yalow, R.S., 1981, Proc. Natl. Acad. Sci. ( USA ), 78: 4576–4578.CrossRefGoogle Scholar
  14. Gammeltoft, S., Kowalski, A., Fehlmann, M., and van Obberghen, E., 1984a, FEBS Letts., 172: 87–90.CrossRefGoogle Scholar
  15. Gammeltoft, S., Stauan-Olsen, P., Ottesen, B., and Fahrenkrug, J., 1984b, Peptides, 5: 937–944.PubMedCrossRefGoogle Scholar
  16. Gombos, G., Ghandour, M.S., Vincendon, G., Reeber, A., and Zanetta, J.P., 1978, In: Maturation of Neurotransmission, A. Vernadakis, E. Giacobini, and G. Filogamo, eds., Krager, Basel, pp 10–22.Google Scholar
  17. Gorus, F.K., Hooghe-Peters, E.L., and Pipeleers, D.G., 1984, J. Cellular Physiol., 121: 45–50.CrossRefGoogle Scholar
  18. Havrankova, J., Roth, J., and Brownstein, M., 1978, Nature (Lond.), 272:827–829.Google Scholar
  19. Heidenreich, K.A. and Brandeburg, D., 1986, Endocrinology, 118: 1835–1842.PubMedCrossRefGoogle Scholar
  20. Hendricks, S.A., Roth, J., Rishi, S., and Becker, K.L., 1983, In: Brain Peptides, D.T. Krieger, M.J. Brownstein, and J.B. Martin, eds., John Wiley and Sons, pp 903–939.Google Scholar
  21. Hendricks, S.A., Agardh, C.D., Taylor, S.J., and Roth, J., 1984, J. Neurochem., 43: 1302–1309.PubMedCrossRefGoogle Scholar
  22. Kappy, M.S. and Raizada, M.K., 1982, Brain Res., 249: 390–392.PubMedCrossRefGoogle Scholar
  23. Kappy, M.S., Sellinger, S., and Raizada, M.K., 1984, J. Neurochem., 42: 198–203.PubMedCrossRefGoogle Scholar
  24. LeRoith, D., Shiloach, J., Roth, J., and Lesniak, M.A., 1980, Proc. Natl. Acad. Sci. ( USA ), 77: 6184–6188.CrossRefGoogle Scholar
  25. LeRoith, D., Shiloach, J., Roth, J., and Lesniak, M.A., 1981, J. Biol. Chem., 256: 6533–6536.PubMedGoogle Scholar
  26. Lowe, W.L. and LeRoith, D., 1986, Biochem. Biophvs. Res. Comm., 134: 532–538.Google Scholar
  27. Lowe, W.L., Boyd, F.T., Clarke, D.W., Raizada, M.K., Hart, C., and LeRoith, D., 1986, Endocrinology, 119: 25–35.PubMedCrossRefGoogle Scholar
  28. Margolis, R.K., Preti, C., Lai, D., and Margolis, R.U., 1976; Brain Res., 112: 363–369.PubMedCrossRefGoogle Scholar
  29. McMorris, F.A., Smith, T.M., Desalvo, S., and Furlanetto, R.W., 1986, Proc. Natl. Acad. Sci. ( USA ), 83: 822–826.CrossRefGoogle Scholar
  30. Meier, E., Regan, C.M., Balazs, R., 1984, J. Neurochem., 43: 1328–1335.PubMedCrossRefGoogle Scholar
  31. Petruzzelli, L., Herrera, R., Garcia-Arenas, R., and Rosen, O.M., 1985, J. Biol. Chem., 260: 16072–16075.PubMedGoogle Scholar
  32. Pfenniger, L.H. and Rees, R.P., 1976, In: Neuronal Recognition, S.H. Barondes, ed., Plenum Press, New York, pp 131–173.Google Scholar
  33. Posner, B.I., Kelly, P.A., Shiu, R.P.C., and Friesen, H.G., 1974, Endocrinology, 95: 521–531.PubMedCrossRefGoogle Scholar
  34. Puro, D.G., and Agardh, E., 1984, Science, 225: 1170–1172.PubMedCrossRefGoogle Scholar
  35. Recio-Pinto, E., Rechler, M.M., and Ishii, D.N., 1986, J. Neurosci., 6: 1211–1219.PubMedGoogle Scholar
  36. Rees-Jones, R.W., Hendricks, S.A., Quarum, M., Roth, J., 1984, J. Biol. Chem., 259: 3470–3474.PubMedGoogle Scholar
  37. Roth, R.A., Morgan, D.O., Beaudoin, J., and Sara, V., 1986, J. Biol. Chem., 261: 3753–3757.PubMedGoogle Scholar
  38. Sara, V.R., Hall, K., Misaki, M., Fryklund, L., Christensen, N., and Wetterberg, L., 1983, J. Clin. Invest., 71: 1084–1094.PubMedCrossRefGoogle Scholar
  39. Van Schravendijk, C.F.H., Hooghe-Peters, E.L., De Meyts, P., and Pipeleers, D.G., 1984, Biochem. J., 220: 165–172.PubMedGoogle Scholar
  40. Yip, C.C., Moule, M.L., and Yeung, C.W.T., 1980, Biochem. Biophvs. Res. Comm., 96: 1671–1678.CrossRefGoogle Scholar
  41. Yohe, H.C. and Rosenburg, A., 1977, J. Biol. Chem., 252: 2412–2418.PubMedGoogle Scholar
  42. Young, W.S., Kuhar, M.J., Roth, J., and Brownstein, M.J., 1980, Neuropeptides, 1: 1522.CrossRefGoogle Scholar
  43. Zahniser, N.R., Goens, M.B., Hanaway, P.J., and Vinyeh, J.V., 1984, J. Neurochem., 42: 1353–1362.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • William A. BrennanJr.
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyHarvard UniversityCambridgeUSA

Personalised recommendations