Advertisement

Physiologically Unique Insulin Receptors on Neuronal Cells

  • Mohan K. Raizada
  • Frederick T. Boyd
  • Derrel W. Clarke
  • Derek Le Roith

Abstract

Neuronal cells in primary culture from the brain have been utilized in the present study to determine the physiological and biochemical roles of neuronal insulin receptors. Kinetic characteristics of 125I-insulin binding to neuronal cells were similar to those for glial and peripheral cells although the a and β subunits of the neuronal receptor were significantly smaller in size. Insulin inhibited [3H]norepinephrine uptake and stimulated [3H]-serotonin uptake in neuronal cells, the effect most likely mediated by insulin receptors. In addition, insulin upregulated, while tunicamycin failed to exert any effects on, neuronal insulin receptors. These observations indicate that the neuronal insulin receptor is physiologically distinct from the glial and peripheral receptors and suggest that insulin may have a neuromodulatory role in the brain function.

Keywords

Neuronal Cell Insulin Receptor Neuronal Culture Neuronal Receptor Serotonin Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Havrankova, J., Roth, J., and Brownstein, M. (1978). Nature 272: 827.PubMedCrossRefGoogle Scholar
  2. 2.
    Young, W.S., Kuhar, M.J., Roth, J., and Brownstein M.J. (1980). J. Neurochem., Neuropeptides 1: 15.CrossRefGoogle Scholar
  3. 3.
    Gammeltoft, S. (1984). Physiol. Rev. 4: 1321–1378.Google Scholar
  4. 4.
    Hendricks, S.A., Agardh, C.-D., Taylor, S.I., and Roth, J. (1984). 43: 1302.Google Scholar
  5. 5.
    Hill, J.M., Lesniak, M.A., Pert, C.P., and Roth, J. (1986). Neurosci. 17:1127–1138.CrossRefGoogle Scholar
  6. 6.
    Barbaccia, M., Chuang, D., and Costa, E. (1982). Adv. Biochem. Psychopharmacol. 3: 511–518.Google Scholar
  7. 7.
    Sauter, A., Goldstein, M., Engel, J., and Ueta, K. (1983). Brain Res. 260: 330–333.PubMedCrossRefGoogle Scholar
  8. 8.
    Sailer, C.F., and Chiodo, L.A. (1980). Science 210: 1269–1271.CrossRefGoogle Scholar
  9. 9.
    Palovcik, R.A., Phillips, M.I., Kappy, M.S., and Raizada, M.K. (1984). Brain Res. 309: 187–191.PubMedCrossRefGoogle Scholar
  10. 10.
    Clarke, D.W., Boyd, F.T., Kappy, M.S., and Raizada, M.K. (1984). J. Biol. Chem. 259: 11672–11675.PubMedGoogle Scholar
  11. 11.
    Clarke, D.W., Boyd, F.T., Kappy, M.S., and Raizada, M.K. (1985). Am. J. Physiol. 249: C481 - C489.Google Scholar
  12. 12.
    Boyd, F.T., and Raizada, M.K. (1983). Am. J. Physiol. 245: C283 - C287.PubMedGoogle Scholar
  13. 13.
    Boyd, F.T., Clarke, D.W., Muther, T.F., and Raizada, M.K. (1985). J. Biol. Chem. 260: 15880–15884.PubMedGoogle Scholar
  14. 14.
    Raizada, M.K. (1983). Exp. Cell Res. 143: 351–357.PubMedCrossRefGoogle Scholar
  15. 15.
    Lowe, W.L., Boyd, F.T., Clarke, D.W., Raizada, M.K., Hart, C., and Le Roith, D. (1986). Endocrinology 119: 25–35.PubMedCrossRefGoogle Scholar
  16. 16.
    Yip, C.C., Moule, M.L., and Yeung, C.W.T. (1980). Biochem. Biophys. Res. Commun. 96: 1671–1678.PubMedCrossRefGoogle Scholar
  17. 17.
    Heidenreich, K.A., Zahniser, R.N., Berhanu, P., Brandenburg, D., and Olefsky, J.M. (1983). J. Biol. Chem. 258: 8527–8530.PubMedGoogle Scholar
  18. 18.
    Bottiglieri, D.F., Sumners, C., and Raizada, M.K. (1987). Brain Res., In Press.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Mohan K. Raizada
    • 1
  • Frederick T. Boyd
  • Derrel W. Clarke
    • 1
  • Derek Le Roith
    • 2
  1. 1.Department of PhysiologyUniversity of FloridaGainesvilleUSA
  2. 2.Diabetes Branch, National Institute of Arthritis, Diabetes, Digestive and Kidney DiseasesNational Institute of HealthBethesdaUSA

Personalised recommendations