Structural Evidence for a Subtype of Insulin Receptor in the Central Nervous System

  • Kim A. Heidenreich


Since the discovery of insulin1 and insulin receptors2 in the brain in 1978, there has been an increasing number of investigations into the physiological role of insulin in the central nervous system (CNS). One area of CNS physiology affected by insulin is the regulation of feeding behavior and body weight. Chronic intracerebral ventricular infusion of insulin reduces food intake and body weight3, suggesting that insulin acts as a satiety factor in the CNS. Consistent with this notion is the report that Zucker rats carrying the fa gene have fewer brain insulin receptors4. Furthermore, insulin has been shown to directly alter the firing rate of glucose-sensitive neurons in the ventromedial and lateral hypothalamus5.


Sialic Acid Insulin Receptor Apparent Molecular Weight Insulin Binding Clonal Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Havrankova, D. Schmechel, J. Roth, and M. Brownstein, Identification of insulin in rat brain, Proc. Natl. Acad. Sci. 75: 5732–5741 (1978).CrossRefGoogle Scholar
  2. 2.
    J. Havrankova and J. Roth, Insulin receptors are widely distributed in the central nervous sytem of the rat, Nature 272: 827–829 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    S.C. Woods, E.C. Looter, L.D. McKay, and D. Porte, Jr., Chronic intracerebraventricular infusion of insulin reduces food intake and body weight in baboons, Nature 282: 503–505 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    D.P. Figlewicz, D.M. Dorsa, L.J. Stein, D.G. Baskin, T. Paquette, M.R.C. Greenwood, S.C. Woods, and D. Porte, Jr., Brain and liver insulin binding is decreased in Zucker rats carrying the “fa” gene, Endocrinology 117: 1537–1543 (1985).PubMedCrossRefGoogle Scholar
  5. 5.
    Y. Oomura and H. Kita, Insulin acting as a modulator of feeding through the hypothalamus, Diabetologia 20: 290–298 (1981)PubMedCrossRefGoogle Scholar
  6. 6.
    L. Bassas, F. DePablo, M.A. Lesniak, and J. Roth, Ontogeny of receptors for insulin-like peptides in chick embryo tissues: Early dominance of insulin-like growth factor over insulin receptors in brain, Endocrinology 117: 2321–2329 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    J.M. Hill, M.A. Lesniak, C.B. Pert, and J. Roth, Autoradiographic localization of insulin receptors in rat brain: Prominence in olfactory and limbic areas, Neuroscience 17: 1127–1138 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Kappy, S. Sellinger and M. Raizada, Insulin binding in four regions of the developing rat brain, J. Neurochem. 42: 198–203 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    J.W. Yang, M.K. Raizada and R.E. Fellows, Effects of insulin on cultured rat brain cells: Stimulation of ornithine decarboxylase activity, J. Neurochem. 36: 1050–1057 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    J.R. Bottenstein and G.H. Sato, Growth of a rat neuroblastoma cell line in serum-free supplemented medium, Proc. Natl. Acad. Sci. 76: 514–517 (1979).PubMedCrossRefGoogle Scholar
  11. 11.
    E. Recio-Pinto, F.F. Lang, and D.N. Ishii, Insulin and insulin-like growth factor II permit nerve growth factor binding and the neurite formation response in cultured human neuroblastoma cells. Proc. Natl. Acad. Sci. 81: 2562–2566 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    D. Puro and E. Agardh, Insulin-mediated regulation of neuronal maturation, Science 225: 1170–1172 (1984).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Jacobs, Y. Shechter, K. Bissell, and P. Cuatrecasas, Purification and properties of insulin receptors from rat liver membranes, Biochem. Biophys. Res. Commun. 77: 981–988 (1977).CrossRefGoogle Scholar
  14. 14.
    T.W. Siegal, S. Ganguly, S. Jacobs, O.M. Rosen, and C.S. Rubin, Purification and properties of the human placental insulin receptor, J. Biol. Chem. 256: 9266–9273 (1981).Google Scholar
  15. 15.
    C.C. Yip, C.W.T. Yeung, and M.L. Moule, Photoaffinity labeling insulin receptors of rat adipocyte membrane, J. Biol. Chem. 253: 1743–1745 (1978).PubMedGoogle Scholar
  16. 16.
    P.F. Pilch, and M.P. Czech, Interaction of cross-linking agents with the insulin effector system of isolated fat cells, J. Biol. Chem. 254: 3375–3381 (1979).PubMedGoogle Scholar
  17. 17.
    A. Ullrich, J.R. Bell, E.Y. Chen, R. Herrera, L.M. Petruzzelli, T.J. Dull, A. Gray, L. Coussens, Y.C. Liao, M. Tsubokawa, A. Mason, P.H. Seeburg, C. Grunfeld, O.M. Rosen, and J. Ramachandran, Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes, Nature 313: 756–761 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    Y. Ebina, L. Ellis, K. Jarnagin, M. Edery, L. Graf, E. Clauser, J. Ou, F. Masiarz, Y.W. Kan, I.D. Goldfine, R.A. Roth, and W.J. Rutter, The human insulin receptor cDNA: The structure basis for hormone-activated transmembrane signalling, Cell 40: 747–758 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    J. Massague, P.F. Pilch, and M.P. Czech, Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries, Proc. Natl. Acad. Sci. 77: 7137–7141 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    S. Jacobs, E. Hazum, and P. Cuatrecasas, The subunit structure of rat liver insulin receptor, J. Biol. Chem. 255: 6937–6940 (1980).PubMedGoogle Scholar
  21. 21.
    M. Kasuga, F.A. Karlson, and C.R. Kahn, Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor, Science 215: 185–187 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    E. Van Obberghen and A. Kowalski, Phosphorylation of the hepatic insulin receptor, FEBS Lett. 143: 179–182 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    L.M. Petruzzelli, S. Ganguly, C.J. Smith, M.H. Cobb, C.S. Rubin, and O.M. Rosen, Insulin activates a tyrosine specific protein kinase-in extracts of 3T3–L1 adipocytes and human placenta, Proc. Natl. Acad. Sci. 79: 6792–6796 (1982).PubMedCrossRefGoogle Scholar
  24. 24.
    J. Avruch, R.A. Nemenoff, P.J. Blackshear, M.W. Pierce, and R. Osthanondh, Insulin-stimulated tyrosine phosphorylation of the insulin receptor in detergent extracts of human placental membranes,,z Biol. Chem. 257: 15162–15166 (1982).Google Scholar
  25. 25.
    S. Jacobs, E. Hazum, and P. Cuatrecasas, Digestion of insulin receptors with proteolytic and glycosidic enzymes: Effects on purified and membrane-associated receptor subunits, Biochem. Biophys. Res. Commun. 94: 1066–1073 (1980).CrossRefGoogle Scholar
  26. 26.
    J.A. Hedo, L.C. Harrison, and J. Roth, Binding of insulin receptors to lectins: Evidence for common carbohydrate determinants on several membrane receptors, Biochemistry 20: 3385–3393 (1981).PubMedCrossRefGoogle Scholar
  27. 27.
    M.H. Wisher, M.D. Baron, R.H. Jones, P.H. Sonksen, D.J. Saunders, P. Thamm, and D. Brandenburg, Photoreactive insulin analogues used to characterize the insulin receptor, Biochem. Biophys. Res. Commun. 92: 492–498 (1980).CrossRefGoogle Scholar
  28. 28.
    K.A. Heidenreich and D. Brandenburg, Oligosaccharide heterogeneity of insulin receptors. Commparison of N-linked glycosylation of insulin recepttors in adipocytes and brain, Endocrinology 118: 1835–1842 (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    J.A. Hedo, M. Kasuga, E. Van Obberghen, J. Roth, and C.R. Kahn, Direct demonstration of glycosylation of insulin receptor subunits by biosynthetic and external labeling: Evidence for heterogeneity, Proc. Natl. Acad. Sci. 78: 4791–4795 (1981).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Gammeltoft, P. Staun-Olsen, B. Ottensen, and J. Fahrenkrug, Insulin receptors in rat brain cortex. Kinetic evidence for a receptor subtype in the central nervous system, Peptides 5: 937–944 (1984).PubMedCrossRefGoogle Scholar
  31. 31.
    W.S. Young, III, M.J. Kuhar, J. Roth, and M.J. Brownstein, Radiohistochemical localization of insulin receptors in the adult and developing rat brain, Neuropeptides 1: 15–22 (1980).CrossRefGoogle Scholar
  32. 32.
    K.A. Heidenreich, N.R. Zahniser, P. Berhanu, D. Brandenburg, and J.M. Olefsky, Structural differences between insulin receptors in the brain and peripheral target tissues, J. Biol. Chem. 258: 8527–8530 (1983).PubMedGoogle Scholar
  33. 33.
    J.F. Haskell, E. Meezan, and D.J. Pillon, Identification of the insulin receptor of cerebral microvessels, Am. J. Physiol. 248: E115 - E125 (1985).PubMedGoogle Scholar
  34. 34.
    W.M. Pardridge, J. Eisenberg, and J. Yang, Human blood-brain barrier insulin receptor, J. Neurochem. 44: 1771–1778 (1985).PubMedCrossRefGoogle Scholar
  35. 35.
    K.A. Heidenreich, and P.R. Gilmore, Structural and functional characteristics of insulin receptors in rat neurobalstoma cells, J. Neurochem. 45: 1642–1648 (1985).PubMedCrossRefGoogle Scholar
  36. 36.
    D. Schubert, S. Heinemann, W. Carlisle, H. Tarikas, B. Kimes, J. Patrick, J.H. Steinbach, W. Culp, and B.L. Brandt, Clonal cell lines from rat central nervous system, Nature 249: 224–227 (1974).PubMedCrossRefGoogle Scholar
  37. 37.
    W.B. Stallcup, and M. Cohn, Correlation of surface antigens and cell type in clonal cell lines from the rat central nervous sytem, Exp. Cell Res. 98: 2858–297 (1976).Google Scholar
  38. 38.
    L. Warren, J.P. Fuhrer, and C.A. Buck, Surface glycoproteins of normal and transformed cells: A difference determined by sialic acid and growth-dependent sialyltransferase, Proc. Natl. Acad. Sci. 69: 1838–1846 (1972).PubMedCrossRefGoogle Scholar
  39. 39.
    M. Manthorpe, R. Adler, and S. Varon, Development, reactivity, and GFA immunofluorescence of astroglia-containing monolayer cultures from rat cerebrum, J. Neurocytol. 8: 605–621 (1979).PubMedCrossRefGoogle Scholar
  40. 40.
    A. Bignami, L.F. Eng, D. Dahl, and C.T. Uyeda, Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence, Brain Res. 43: 429–435 (1972).PubMedCrossRefGoogle Scholar
  41. 41.
    S. Varon, S.D. Skaper, G. Barbin, I. Selak, and M. Manthorpe, Low molecular weight agents support survival of cultured neurons from the central nervous system, J. Neuroscience 4: 654–658 (1984)Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Kim A. Heidenreich
    • 1
  1. 1.Department of Medicine; M-023EUniversity of California, San DiegoLa JollaUSA

Personalised recommendations