Advertisement

Insulin in the Central Nervous System: A Regulator of Appetite and Body Weight

  • Dianne P. Figlewicz
  • Stephen C. Woods
  • Denis G. Baskin
  • Daniel M. Dorsa
  • Barbara J. Wilcox
  • Leslie J. Stein
  • Daniel PorteJr.

Abstract

Although numerous potentially physiologic actions of insulin in the central nervous system (CNS) have been identified at the cellular level, the consequences of these actions at the level of the organism have not been defined. In this chapter we advance the hypothesis that insulin may act as a regulator of body weight. In 1979, Woods and Porte suggested that insulin levels in the cerebrospinal fluid (CSF) may act as an indicator of body adiposity and provide a negative feedback signal to regulate body weight on a long term basis.1,2 This hypothesis was based upon three lines of experimental evidence: First, basal plasma insulin levels are correlated with body adiposity. Second, CSF insulin levels represent a slow integral over time of plasma levels, with rapid fluctuations in plasma insulin levels being damped. Third, direct infusion of insulin into the CSF and into certain brain sites can result in a decrease of food intake and body weight. These three lines of evidence will be reviewed. Additionally, this chapter will provide some discussion of the possible regulation involved in generating and sensing this signal, as well as possible defects in the brain insulin system in a genetically obese rat model. Readers who wish specific discussion of issues surrounding the brain insulin system are referred to the chapters in this text by LeRoith, Heidenreich, and Raizada, and to a recent review.3

Keywords

Insulin Level Insulin Receptor Olfactory Bulb Insulin Infusion Plasma Insulin Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. C. Woods, E. C. Lotter, L. D. McKay, and D. Porte, Jr., Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons, Nature 282: 503 (1979).PubMedCrossRefGoogle Scholar
  2. 2.
    D. Porte, Jr., and S. C. Woods, Insulin effects on the central nervous system (CNS): evidence for a long term control system for body weight regulation, in: “Proc. 10th Congress of Int. Diabetes Federation,” Excerpta Medica, Amsterdam (1980).Google Scholar
  3. 3.
    D. G. Baskin, D. P. Figlewicz, S. C. Woods, D. Porte, Jr., and D. M. Dorsa, Insulin in the brain, Ann. Rev. Physiol. 49: 335 (1987).CrossRefGoogle Scholar
  4. 4.
    J. D. Bagdade, E. L. Bierman, and D. Porte, Jr., The significance of basal insulin in the evaluation of the insulin response to glucose in diabetic and non-diabetic subjects, J. Clin. Invest. 46: 1549 (1967).PubMedCrossRefGoogle Scholar
  5. 5.
    S. C. Woods, E. Decke, and J. R. Vasselli, Metabolic hormones and regulation of body weight, Psych. Rev. 81: 26 (1974).CrossRefGoogle Scholar
  6. 6.
    T. Ono, A. B. Steffens, and K. Sasaki, Influence of peripheral and intracerebroventricular glucose and insulin infusions on peripheral and cerebrospinal fluid glucose and insulin levels, Physiol. Behay. 30: 301 (1983).CrossRefGoogle Scholar
  7. 7.
    P. M. Daniel and J. R. Henderson, Insulin in bile and other fluids, Lancet 1: 1256 (1967).PubMedCrossRefGoogle Scholar
  8. 8.
    S. C. Woods, D. B. West, L.J. Stein, D. P. Figlewicz, and D. Porte, Jr., Meals and intravenous glucose or insulin infusion increase cerebrospinal fluid insulin levels in the baboon, Submitted, Peptides, 1986.Google Scholar
  9. 9.
    W. e. vlahon, J. Steinke, G. M. McKhann, and M. L. Mitchell, Measurement of insulin and of insulinlike activity in cerebrospinal fluid of man, Metabolism 11: 416 (1962).Google Scholar
  10. 10.
    R. U. Margolis and N. Altszuler, Insulin in the cerebrospinal fluid, Nature 215: 1375 (1967).PubMedCrossRefGoogle Scholar
  11. 11.
    S. C. Woods and D. Porte, Jr., Effect of intracisternal insulin on plasma glucose and insulin in the dog, Diabetes 24: 905 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    W. S. Young, III, Periventricular hypothalamic cells in the rat brain contain insulin mRNA, Neuropeptides 8: 93 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    O. E. Owen, G. A. Reichard, Jr., G. Boden, and C. R. Shuman, Comparative measurements of glucose, beta-hydroxybutyrate, acetoacetoate, and insulin in blood and cerebrospinal fluid during starvation, Metabolism 23: 7 (1974).PubMedCrossRefGoogle Scholar
  14. 14.
    L. J. Stein, D. M. Dorsa, D. G. Baskin, D. P. Figlewicz, H. Ikeda, S. P. Frankmann, M. R. C. Greenwood, D. Porte, Jr., and S. C. Woods, Immunoreactive insulin levels are elevated in the cerebrospinal fluid of genetically obese Zucker rats, Endocrinology 113: 2299 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    A. B. Steffens, A. J. W. Scheurink, D. Porte, Jr., and S. C. Woods, Effects of changes in peripheral glucose and insulin levels on cerebrospinal fluid glucose and insulin levels, manuscript in prepraration.Google Scholar
  16. 16.
    S. C. Woods and D. Porte, Jr., Relationship between plasma and cerebrospinal fluid insulin levels of dogs, Am. J. Physiol. 233: E331 (1977).PubMedGoogle Scholar
  17. 17.
    B. J. Wallum, G. J. Taborsky, Jr., D. Porte, Jr., D. P. Figlewicz, L. Jacobson, J. C. Beard, W. K. Ward, and D. Dorsa, Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man, J. Clin. Endo. Metab. 64: 190 (1977).CrossRefGoogle Scholar
  18. 18.
    H. J. L. Frank and W. M. Pardridge, Insulin binding to brain microvessels, Adv. Metab. Disorders 10: 291 (1983).Google Scholar
  19. 19.
    W. M. Pardridge, J. Eisenberg, and J. Yang, Human blood-brain barrier insulin receptor, J. Neurochem. 44: 1771 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    I. Jialal, G. L. King, S. Buchwald, C. R. Kahn, and M. Crettaz, Processing of insulin by bovine endothelial cells in culture: internalization without degradation, Diabetes 33: 794 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    N. Kaiser, L Vlodaysky, A. Tursinai, Z. Fuks, and E. Cerasi, Binding, internalization and degradation of insulin in vascular endothelial cells, Diabetes 31: 1077 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    K. Dernovsek, R. Bar, B. Ginsberg, and M. Lioubin, Processing of cell-bound insulin by capillary and macrovascular endothelial cells in culture, J. Clin. Endo. Metab. 58: 761 (1984).CrossRefGoogle Scholar
  23. 23.
    K. D. Dernovsek and B. S. Bar, Rapid transport of biologically intact insulin through cultured endothelial cells, Am. J. Physiol. 248: E244 (1985).PubMedGoogle Scholar
  24. 24.
    G. L. King and S. Johnson, Receptor-mediated transport of insulin across endothelial cells, Science 227: 1583 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    T. H. Milhorat and M. K. Hammock, Cerebrospinal fluid as reflection of internal milieu of brain, in: “Neurobiology of Cerebrospinal Fluid,” J.H. Wood, ed., Plenum Press, New York (1983).Google Scholar
  26. 26.
    D. G. Baskin, B. Brewitt, D. A. Davidson, E. Corp, T. Paquette, D. P. Figlewicz, T. K. Lewellen, M. K. Graham, S. C. Woods, and D. M. Dorsa, Quantitative autoradiographic evidence for insulin receptors in the choroid plexus of the rat brain, Diabetes 35: 246 (1986).PubMedCrossRefGoogle Scholar
  27. 27.
    J. M. Hill, M. A. Lesniak, J. Roth, and C. B. Pert, Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas, Soc. Neurosci. Abstr. 11: 1053 (1985).Google Scholar
  28. 28.
    D. G. Baskin, S. C. Woods, D. B. West, M. van Houten, B. I. Posner, D. M. Dorsa, and D. Porte, Jr., Immunocytochemical detection of insulin in rat hypothalamus and its possible uptake from cerebrospinal fluid, Endocrinology 113: 1818 (1983).PubMedCrossRefGoogle Scholar
  29. 29.
    D. Porte, Jr., D. G. Baskin, D. M. Dorsa, D. P. Figlewicz, D. B. West, L. J. Stein, H. Ikeda, and S. C. Woods, Regulation of CSF insulin, in: “Abstracts, VIII, International Conference of the Physiology of Food and Fluid Intake” (1983).Google Scholar
  30. 30.
    L. J. Stein, M. R. C. Greenwood, D. Porte, Jr., and S. C. Woods, Decreased plasma/CSF IRI ratio (PCR) in genetically obese and aged lean rats, Proc. Fourth Int. Congress Obesity: 54A (1983).Google Scholar
  31. 31.
    J. Havrankova, J. Roth, and M. Brownstein, Concentrations of insulin and of insulin receptors in the brain are independent of peripheral insulin levels: studies of obese and streptozotocin-treated rodents, J. Clin. Invest. 64: 636 (1979).PubMedCrossRefGoogle Scholar
  32. 32.
    N. R. Zahniser, M. B. Goens, P. J. Hathaway, and J. V. Vinych, Characterization and regulation of insulin receptors in rat brain, J. Neurochem. 42: 1345 (1984).CrossRefGoogle Scholar
  33. 33.
    C. Larue, Prandial drinking and the, disruption of meal patterns in olfactory bulbectomized rats, Physiol. Behay. 15: 491 (1975).Google Scholar
  34. 34.
    E. S. Corp, S.C. Woods, D. Porte, Jr., D. M. Dorsa, D. P. Figlewicz, and D. G. Baskin, Localization of I-insulin binding sites in the rat hypothalamus by quantitative autoradiography, Neurosci. Letters 70: 17 (1986).CrossRefGoogle Scholar
  35. 35.
    S. T. Pacold and W. G. Blackard, Central nervous system insulin receptors in normal and diabetic rats, Endocrinology 105: 1452 (1979).PubMedCrossRefGoogle Scholar
  36. 36.
    Y. Sakamoto, Y. Oomura, H. Kita, S. Shibata, S. Suzuki, T. Kuzuya, and S. Yoshida, Insulin content and insulin receptors in the rat brain. Effect of fasting and streptozotocin treatment, Biomed. Research 1: 334 (1980).Google Scholar
  37. 37.
    R. B. Melnyk and J. M. Martin, Failure of chronic experimental hyperinsulinism to alter insulin binding to hypothalamic receptors in the rat, Acta Endocrinol. 107: 86 (1984).PubMedGoogle Scholar
  38. 38.
    R. B. Melnyk and J. M. Martin, Starvation-induced changes in insulin binding to hypothalamic receptors in the rat, Acta Endocrinol. 107: 78 (1984).PubMedGoogle Scholar
  39. 39.
    S. Duran Garcia, J. Gomez Nieto, E. Romero Bobillo, F. Padron Rivas, and A. Maranon Cabello, Characterization of insulin receptors in rat hypothalamus: effect of obesity and starvation, in: “Diabetes and Obesity,” J. Vague and Ph. Vague, eds., Excerpta Medica, Amsterdam-Oxford (1979).Google Scholar
  40. 40.
    E. S. Corp, N. J. Bohannon, B. J. Wilcox, S. C. Woods, D. M. Dorsa, D. Porte, Jr., and D. G. Baskin, Increased insulin binding in the paraventricular nucleus of rats after chronic caloric restriction: in vitro quantitative autoradiography, Soc. Neurosci. Abstr. 12: 612 (1986).Google Scholar
  41. 41.
    D. J. Brief and J. D. Davis, Reduciton of food intake and body weight by chronic intraventricular insulin infusion, Brain Res. Bull. 12: 571 (1984).PubMedCrossRefGoogle Scholar
  42. 42.
    J. H. Strubbe and C. G. Mein, Increased feeding in response to bilateral injection of insulin antibodies in the VMH, Physiol. Behay. 19: 309 (1977).CrossRefGoogle Scholar
  43. 43.
    J. Panksepp and D. M. Nance, Insulin, glucose and hypothalamic regulation of feeding, Physiol. Behay. 9: 447 (1972).CrossRefGoogle Scholar
  44. 44.
    S. Nicolaidis, Lateral hypothalamic control of metabolic factors related to feeding, Diabetologia 20: 426 (1981).PubMedCrossRefGoogle Scholar
  45. 45.
    C. R. Plata-SalamAn, Y. Oomura, and N. Shimizu, Dependence of food intake on acute and chronic ventricular administration of insulin, Physiol. Behay. 37: 717 (1986).CrossRefGoogle Scholar
  46. 46.
    C. R. Plata-Salamin and Y. Oomura, Effect of intra-third ventricular administration of insulin on food intake after food deprivation, Physiol. Behay. 37: 735 (1986).CrossRefGoogle Scholar
  47. 47.
    D. P. Figlewicz, F. Lacour, A. Sipols, D. Porte, Jr., and S. C. Woods, Gastroenteropancreatic peptides and the central nervous system, Ann. Rev. Physiol. 49: 383 (1987).CrossRefGoogle Scholar
  48. 48.
    D. P. Figlewicz, D. West, L. J. Stein, S. C. Woods, and D. Porte, Jr., Insulin alters the sensitivity of baboons to CCK-induced single meal suppression, Am. J Physiol. 250: R856 (1986).PubMedGoogle Scholar
  49. 49.
    J. W. Yang and R. E. Fellows, Characterization of insulin stimulation of the incorporation of radioactive precursors into macromolecules in cultured rat brain cells, Endocrinology 107: 1717 (1980).PubMedCrossRefGoogle Scholar
  50. 50.
    M. K. Raizada, J. W. Yang, and R. E. Fellows, Binding of 1251-insulin to specific receptors and stimulation of nucleotide incorporation in cells cultured from rat brain, Brain Res. 200: 389 (1980).PubMedCrossRefGoogle Scholar
  51. 51.
    E. Recio-Pinto and D. N. Ishii, Effects of insulin, insulin-like growth factor-II and nerve growth factor on neurite outgrowth in cultured human neuroblastoma cells, Brain Res. 302: 323 (1984).PubMedCrossRefGoogle Scholar
  52. 52.
    E. Y. Snyder and S. U. Kim, Insulin: is it a nerve survival factor, Brain Res. 196: 565 (1980).PubMedCrossRefGoogle Scholar
  53. 53.
    D. E. Rhoads, R. J. DiRocco, L. D. Osburn, N. A. Peterson, and E. Raghupathy, Stimulation of synaptosomal uptake of neurotransmitter amino acids by insulin: possible role of insulin as a neuromodulator, Biochem. Biophys. Res. Comm. 119: 1198 (1984).PubMedCrossRefGoogle Scholar
  54. 54.
    F. T. Boyd, Jr., D. W. Clarke, T. F. Muther, and M. K. Raizada, Insulin receptors and insulin modulation of norepinephrine uptake in neuronal cultures from rat brain, J. Biol. Chem. 260: 15880 (1985).PubMedGoogle Scholar
  55. 55.
    G. A. Bray, The Zucker fatty rat: a review, Fed. Proc. 36: 148 (1977).PubMedGoogle Scholar
  56. 56.
    L. J. Stein, D. P. Figlewicz, D. M. Dorsa, D. G. Baskin, D. Reed, D. Braget, M. Midkiff, D. Porte, Jr., and S. C. Woods, Effect of insulin concentrations on cerebrospinal fluid insulin concentrations in heterozygous lean and obese Zucker rats, Int. J. Obesity 9: A145 (1985).Google Scholar
  57. 57.
    D. G. Baskin, L. J. Stein, H. Ikeda, S. C. Woods, D. P. Figlewicz, D. Porte, Jr., M. R. C. Greenwood, and D. M. Dorsa, Genetically obese Zucker rats have abnormally low brain insulin content, Life Sciences 36: 627 (1985).PubMedCrossRefGoogle Scholar
  58. 58.
    D. P. Figlewicz, D. M. Dorsa, L. J. Stein, D. G. Baskin, T. Paquette, M. R. C. Greenwood, S. C. Woods, and D. Porte, Jr., Brain and liver insulin binding is decreased in Zucker rats carrying the ‘fa’ gene, Endocrinology 117: 1537 (1985).PubMedCrossRefGoogle Scholar
  59. 59.
    D. P. Figlewicz, H. Ikeda, L. J. Stein, D. M. Dorsa, S. C. Woods, and D. Porte, Jr., Brain insulin binding is decreased in Wistar Kyoto rats carrying the ‘fa’ gene, Peptides 7: 61 (1986).PubMedCrossRefGoogle Scholar
  60. 60.
    B. J. Wilcox, E. S. Corp, D.P. Figlewicz, D. M. Dorsa, M. R. C. Greenwood, D. Porte, Jr., and D. G. Baskin, Characterization of insulin binding in hypothalamus of three genotypes of Zucker rat by in vitro quantitative autoradiography, Soc. Neurosci. Abstr. 12: 1488 (1986).Google Scholar
  61. 61.
    H. Ikeda, D. B. West, J. J. Pustek, D. P. Figlewicz, M. R. C. Greenwood, D. Porte, Jr., and S. C. Woods, Intraventricular insulin reduces food intake and body weight of lean but not obese Zucker rats, Appetite 7: 381 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Dianne P. Figlewicz
    • 1
    • 2
  • Stephen C. Woods
    • 1
    • 2
  • Denis G. Baskin
    • 1
    • 2
  • Daniel M. Dorsa
    • 1
    • 2
  • Barbara J. Wilcox
    • 1
    • 2
  • Leslie J. Stein
    • 1
    • 2
  • Daniel PorteJr.
    • 1
    • 2
  1. 1.Depts. of Psychology, Medicine, Biological Structure and PharmacologyUniversity of WashingtonSeattleUSA
  2. 2.Division of Metabolism and EndocrinologyVA Medical CenterSeattleUSA

Personalised recommendations