Advertisement

Localization of Insulin to Neuronal Cells

  • Sherin Devaskar
  • Ruben Schechter
  • Arnold Kahn

Abstract

Insulin has been identified in the brain of various animal species1, including the human2. Although various biologic effects for insulin have been described in the central nervous system3,4,5, the exact origin of the peptide remains unclear. A local (i.e. central nervous system) origin for the peptide has been suggested by some groups of investigators5,6, while others contend that insulin enters the brain from the blood vascular system 7. For example, Frank et al, using 125I-insulin, demonstrated the hormone’s ability to cross the neonatal rabbit blood-brain barrier. In subsequent studies, the mechanism by which insulin traverses the vascular endothelium was not clear as there was an absence of externalization (as a part of transcytosis) of the hormone at the brain capillary antiluminal membrane8. Baskin et al observed the uptake of insulin by the adult rat hypothalamus to be from cerebro-spinal fluid9. The cerebrospinal fluid insulin levels in turn have been found to correlate closely with plasma insulin concentrations10,11. On the other hand, insulin mRNA has been demonstrated in the brain5,12, providing the essential biochemical basis for the local synthesis of hormone.

Keywords

Brain Extract Porcine Insulin Insulin Synthesis Brain Insulin Insulin mRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. LeRoith, S. A. Hendricks, M. A. Lesniak, S. Rishi, K. L. Becker, J. Havrankova, J. L. Rosenweig, M. J. Brownstein, and J. Roth, Insulin in brain and other extrapancreatic tissues of vertebrates and non-vertebrates. Adv. Metab. Disorders, Vol 10, p 303–340 (1983).Google Scholar
  2. 2.
    A. Dorn, H. G. Bernstein, A. Rinne, H. J. Hahn and M. Ziegler, Insulin like immunoreactivity in the human brain. Histochem. 74: 293 (1982).CrossRefGoogle Scholar
  3. 3.
    D. W. Clarke, F. T. Boyd, M. S. Kappy and M. K. Raizada, Insulin stimulation macromolecular synthesis in cultured glial cells from rat brain. Am. J. Physiol. 249: C484 - C489 (1985).PubMedGoogle Scholar
  4. 4.
    D. G. Puro and E. Agardh, Insulin-mediated regulation of neuronal maturation. Science 225: 1170–1172 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    F. T. Boyd Jr., D. W. Clarke, T. F. Muther and M. K. Raizada, Insulin receptors and insulin modulation of norepinephrine uptake in neuronal cultures from rat brain. J. Biol. Chem. 260: 15880–15884 (1985).PubMedGoogle Scholar
  6. 6.
    J. Havrankova, D. Schmechel, J. Roth, M. Brownstein, Identification of insulin in rat brain. Proc. Natl. Acad. Sci. USA 75: 5737–5741 (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    H. J. L. Frank, T. Jankovic-Vokes, W. M. Partridge and W. L. Morris, Enhanced insulin binding to blood brain barrier in vivo and to brain microvessels in vitro in newborn rabbits. Diabetes 34: 728–733 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    H. J. L. Frank, W. M. Partridge, W. L. Morris, R. G. Rosenfield and T. B. Choi, Binding and internalization of insulin and insulin-like growth factors by isolated brain microvessels. Diabetes 35: 654–661 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    D. G. Baskin, S. C. Woods, D. B. West, M. vanHouten, B. I. Posner, D. M. Dorsa and D. Porte Jr., Immunocytochemical detection of insulin in rat hypothalamus and its possible uptake from cerebrospinal fluid. Endocrinol. 113: 1818–1825 (1983).CrossRefGoogle Scholar
  10. 10.
    B. J. Wallum, G. J. Taborsky Jr., D. Porte, D. P. Figlewicz, L. Jacobson, J. C. Beard, W. K. Ward and D. Dorsa, Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. J. Clin. Endocrinol. Metab. 64: 190–194 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    L. J. Stein, D. M. Dorsa, D. G. Baskin, D. P. Figlewicz, N. Ikeda, S. P. Frankmann, M. R. C. Greenwood, D. Porte Jr., S. C. Woods, Immunoreactive insulin levels are elevated in the cerebrospinal fluid of genetically obese Zucker rats. Endocrinol. 113: 2299 (1983).CrossRefGoogle Scholar
  12. 12.
    L. Villa-Komaroff, A. Gonzales, H. Y Song, B. Wentworth, P. Dobnes, Novel insulin related sequences in fetal brain. Adv. Exp. Med. Biol. 181: 65 (1984).PubMedGoogle Scholar
  13. 13.
    S. U. Devaskar, L. Karycki and U. P. Devaskar, Varying brain insulin concentrations differently regulate the fetal brain insulin receptor. Biochem. Biophys. Res. Commun. 136: 208–219 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    L. A. Sternberger, P. M. Hardy Jr., J. J. Cuculis and H. G. Meyer, The unlabeled antibody enzyme method of immunohistochemistry. J. Histochem. Cytochem. 18: 315–333 (1970).PubMedCrossRefGoogle Scholar
  15. 15.
    R. Schechter, L. Karycki, A. Kahn and S. Devaskar, The identification of an insulin-like substance in the fetal rabbit brain (Abstr) Clin. Res. 34: 982A (1986).Google Scholar
  16. 16.
    M. K. Raizada, Localization of insulin-like immunoreactivity in the neurons from primary cultures of rat brain. Exp. Cell Res. 143: 351–357 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    R. M. Hembry, G. Murphy, T. E. Causton, J. T. Dingle, J. J. Reynolds, Characterization of a specific antiserum for mammalian collagenase from several species: Immunolocalization of collagenase in rabbit chrondrocytes and uterus. J. Cell Sci. 00: 1–19 (1981).Google Scholar
  18. 18.
    R. Schechter, L. Karycki, F. Sadiq, T. Hilliard, A. Kahn and S. Devaskar, Antibody staining and in situ hybridization reveals that a subset of neurons in the rabbit neonatal brain produce insulin. (Abstr) Pediatric Research (1987).Google Scholar
  19. 19.
    A. Permutt, J. Chirgurin, S. Giddings, K. Kakita and P. Rothwein, Insulin Biosynthesis and Diabetes Mellitus. Clin. Biochem. 14 (5): 230–236 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    P. Liesi, J. P. Julein, P. Vilja, F. Grosveld and L. Rechardt, Specific detection of neuronal cell bodies: In situ hybridization with a biotin-labeled neurofilament cDNA probe. J. Histochem. Cytochem. 34: 923–926 (1986).PubMedCrossRefGoogle Scholar
  21. 21.
    W. S. Young, Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides 8: 93–97 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Sherin Devaskar
    • 1
    • 2
  • Ruben Schechter
    • 1
    • 2
  • Arnold Kahn
    • 1
    • 2
  1. 1.Department of PediatricsSt. Louis UniversitySt. LouisUSA
  2. 2.Cardinal Glennon Children’s Hospital and The Pediatric Research InstituteSt. LouisUSA

Personalised recommendations