Internalization of Insulin and Its Receptor: Role in Signaling

  • Barry I. Posner
  • Masood N. Khan
  • John J. M. Bergeron


Tissue resistance to the action of insulin plays a role in the pathogenesis of Diabetes Mellitus, especially the Type II variety.1 This has given clinical relevance to investigation of the mechanism of insulin action on target tissues. One approach to studying insulin action is to examine the nature of its interaction with target cells. In this article we shall briefly outline the fate of insulin following interaction with its receptor, and the role that subsequent cellular handling of insulin-receptor complexes might play in hormone signal transmission.


Insulin Receptor Early Endosome Insulin Binding Insulin Degradation Golgi Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. M. Reaven, Insulin resistance in noninsulin-dependent diabetes mellitus. Does it exist and can it be measured? Amer. J.Med. 74 (No.IA): 3 (1983).PubMedCrossRefGoogle Scholar
  2. 2.
    Y. Schecter, J. Schlessinger, S. Jacobs, K.-J. Chang, and P. Cuatrecasas, Fluorescent labeling of hormone receptors in viable cells: Preparation and properties of highly fluorescent derivatives of epidermal growth factor and insulin, Proc. Natl. Acad. Sci. USA 75: 2135 (1978).CrossRefGoogle Scholar
  3. 3.
    B. I. Posner, J. J. M. Bergeron, Z. Josefsberg, M. N. Khan, R. J. Khan, B. A. Patel, R. A. Sikstrom, and A. K. Verma, Polypeptide Hormones: Intracellular receptors and internalization, Recent Prog. Horm. Res. 37: 539 (1981).PubMedGoogle Scholar
  4. 4.
    B. I. Posner, M. N. Khan, and J. J. M. Bergeron, Endocytosis of peptide hormones and other ligands, Endocr. Revs. 3: 280 (1982).CrossRefGoogle Scholar
  5. 5.
    J. J. M. Bergeron, J. Cruz, M. N. Khan, and B. I. Posner, Uptake of insulin and other ligands into receptor-rich endocytic components of target cells. The endosomal apparatus, Annual Rev. of Phvsiol. 47: 383 (1985).CrossRefGoogle Scholar
  6. 6.
    J. J. M. Bergeron, R. Sikstrom, A. R. Hand and B. I. Posner, Binding and uptake of 125I-insulin into rat liver hepatocytes and endothelium: An in vivo radioautographic study, J. Cell Biol. 80: 427 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    B. I. Posner, B. Patel, M. N. Khan, and J. J. M. Bergeron, Effect of chloro- quine on the internalization of 125I-insulin into subcellular fractions of rat liver: Evidence for an effect of chloroquine on Golgi elements, J. Biol. Chem. 257: 5789 (1982).PubMedGoogle Scholar
  8. 8.
    M. N. Khan, B. I. Posner, R. J. Khan, and J. J. M. Bergeron, Internalization of insulin into rat liver Golgi elements: Evidence for vesicle heterogeneity and the path of intracellular processing, J. Biol. Chem. 257: 5969 (1982).PubMedGoogle Scholar
  9. 9.
    A. D. Attie, R. C. Pittman, and D. Steinberg, Hepatic catabolism of low density lipoprotein: Mechanisms and metabolic consequences, Heoatologv 2: 269 (1982).Google Scholar
  10. 10.
    P. J. Courtoy, J. Quintart, and P. Baudhuin, Shift of equilibrium density induced by 3, 3-diaminobenzidine cytochemistry: A new procedure for the analysis and purification of peroxidase-containing organelles, J. Cell Biol. 98: 870 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    D. G. Kay, M. N. Khan, B. I. Posner, and J. J. M. Bergeron, 125I-insulin in hepatic Golgi fractions: Application of the diaminobenzidine (DAB)-shift protocol, Biochem. Bioohvs Res. Commun. 123: 1144 (1984).CrossRefGoogle Scholar
  12. 12.
    A. Helenius, J. Mellman, D. Wall, and A. Hubbard, Endosomes, Trends Biochem. Scis 7: 245 (1983).CrossRefGoogle Scholar
  13. 13.
    M. N. Khan, S. Savoie, J. J. M. Bergeron, and B. I. Posner, Insulin and insulin receptor uptake into Golgi fractions: Effect and possible site of chloro- quine action, Diabetes 34: 1025 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    H. J. Geuze, J. W. Slot, G. J. A. M. Strous, H. F. Lodish, and A. L. Schwartz, Intracellular site of asialoglycoprotein receptor-mediated endocytosis, Cell 32: 277 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    Z. Josefsberg, B. I. Posner, B. Patel, and J. J. M. Bergeron, Uptake of prolactin into female rat liver: Concentration of intact hormone in the Golgi apparatus, J. Biol. Chem. 254: 209 (1979).PubMedGoogle Scholar
  16. 16.
    M. Fehlmann, J.-L. Carpentier, A. Le Cam, P. Thamm, D. Saunders, D. Brandenburg, L. Orci, and P. Freychet, Biochemical and morphological evidence that the insulin receptor is internalized with insulin in hepatocytes, J. Cell Biol. 93: 82 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Krupp and M. D. Lane, On the mechanism of ligand-induced down-regulation of insulin receptor level in the liver cell, J. Biol. Chem. 256: 1689 (1981).PubMedGoogle Scholar
  18. 18.
    M. Fehlmann, J.-L. Carpentier, E. Van Obberghen, P. Freychet, P. Thamm, D. Saunders, D. Brandenburg, and L. Orci, Internalized insulin receptors are recycled to the cell surface in rat hepatocytes, Proc. Natl. Acad. Sci. USA 79: 5921 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    B. Desbuquois, S. Lopez, and H. Burlet, Ligand-induced translocation of insulin receptors in intact rat liver, J. Biol. Chem. 257: 10852 (1982).PubMedGoogle Scholar
  20. 20.
    V. Pezzino, R. Vigneri, N. B. Pliam, and I. D. Goldfine, Rapid regulation of plasma membrane insulin receptors, Diabetologia 29: 211 (1980).CrossRefGoogle Scholar
  21. 21.
    H. J. Geuze, J. W. Slot, G. J. A. M. Strous, J. Peppard, K. von Figura, A. Hasilik, and A. L. Schwartz, Intracellular receptor sorting during endocytosis: Comparative immunoelectron microscopy of multiple receptors in rat liver, Cell, 37: 195 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    W. S. May, Jr. and P. Cuatrecasas, Transferrin receptor: Its biological significance, J, Membr. Biol. 88: 205 (1985).CrossRefGoogle Scholar
  23. 23.
    D. R. Abrahamson and R. Rodewald, Evidence for the sorting of endocytic vesicle contents during the receptor-mediated transport of IgG across the newborn rat intestine, J. Cell Biol. 91: 270 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    L. C. Kuhn and J. P. Kraehenbuhl, The sacrificial receptor-translocation of polymeric IgA across epithelia, Trends Biochem.Sci. 7: 299 (1982).CrossRefGoogle Scholar
  25. 25.
    R. Walsh, F. J. Slaku and B. I. Posner, Prolactin transport from blood to CSF: A specific receptor-mediated mechanism, Endocrinology (in press).Google Scholar
  26. 26.
    S. Terris, and D. F. Steiner, Binding and degradation of 125I-insulin by rat hepatocytes, J.Biol. Chem. 250: 8389 (1975).PubMedGoogle Scholar
  27. 27.
    R. J. Khan, M. N. Khan, J. J. M. Bergeron, and B. I. Posner, Prolactin uptake into liver endocytic components: Reduced sensitivity to chloroquine, Biochim, Bioohvs. Acta 838: 77 (1985).CrossRefGoogle Scholar
  28. 28.
    B. I. Posner, Z. Josefsberg, and J. J. M. Bergeron, Intracellular polypeptide hormone receptors: Characterization and induction of prolactin receptors in the Golgi apparatus of rat liver, J. Biol. Chem, 254: 12494 (1979).PubMedGoogle Scholar
  29. 29.
    J. J. M. Bergeron, N. Searle, M. N. Khan, and B. I. Posner, Differential and analytical subfractionation of rat liver components internalizing insulin and prolactin, Biochemistry 25: 1756 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    M. N. Khan, S. Savoie, J. J. M. Bergeron, and B. I. Posner, Differential kinetics and sensitivity to chloroquine for receptor-mediated insulin and prolactin endocytosis in liver parenchymal cells, Biochim. Bioohvs. Acta 888: 100 (1986).CrossRefGoogle Scholar
  31. 31.
    S. Diment and P. Stahl, Macrophage endosomes contain protease which degrade endocytosed protein ligands, J. Biol. Chem. 260: 15311 (1985).PubMedGoogle Scholar
  32. 32.
    H. J. Geuze, J. W. Slot, G. J. A. M. Strous, A. Hasilik, and K. von Figura, Possible pathways for lysosomal enzyme delivery, J. Cell Biol. 101: 2253 (1985).PubMedCrossRefGoogle Scholar
  33. 33.
    R. J. Pease, G. D. Smith, and T. J. Peters, Degradation of endocytosed insulin in rat liver is mediated by low-density vesicles, Biochem. J. 228: 137 (1985).PubMedGoogle Scholar
  34. 34.
    F. G. Hamel, B. I. Posner, M. Vanderwel, J. J. M. Bergeron, and W. C. Duckworth, Insulin degradation by endosomes in intact liver, Abstract, Forty seventh Annual Meeting of the American Diabetes Association, Diabetes (submitted).Google Scholar
  35. 35.
    K. Kikuchi, J. Lamer, R. J. Freer, and A. R. Day, Effect of insulin fragments on biological activity of insulin and desoctapeptide insulin, I. Potentiation of biological activities, J. Biol. Chem. 256: 9441 (1981).PubMedGoogle Scholar
  36. 36.
    A. R. Saltiel, J. A. Fox, P. Sherline, and P. Cuatrecasas, Insulin-stimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesterase, Science 233: 967 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    M. Kasuga, Y. Fujita-Yamaguchi, D. L. Blithe, M. F. White, and C. R. Kahn, Characterization of the insulin receptor kinase purified from human placental membranes, J. Biol. Chem. 258: 10973 (1983).PubMedGoogle Scholar
  38. 38.
    O. M. Rosen, R. Herrera, Y. Olowe, L. M. Petruzzelli, and M. H. Cobb, Phosphorylation activates the insulin receptor tyrosine protein kinase, Proc. Natl. Acad. Sci. USA 80: 3237 (1983).PubMedCrossRefGoogle Scholar
  39. 39.
    M. N. Khan, S. Savoie, J. J. M. Bergeron, and B. I. Posner, Characterization of rat liver endosomal fractions: in vivo activation of insulin-stimulable kinase in these structures, J. Biol. Chem. 261: 8462 (1986).PubMedGoogle Scholar
  40. 40.
    M. N. Khan, J. J. M. Bergeron, and B. I. Posner, Internalization of the activated insulin receptor kinase in rat liver endosomes, J. Cell. Biol. 103 (No.5, Part 2): 450a (1986). [Abstr. No. 1679 ].Google Scholar
  41. 41.
    G. Grunberger, Y. Zick, and P. Gorden, Defect in phosphorylation of insulin receptors in cells from an insulin-resistant patient with normal insulin binding, Science 223: 932 (1984).PubMedCrossRefGoogle Scholar
  42. 42.
    D. O. Morgan, L. Ho, L. J. Korn, and R. A. Roth, Insulin action is blocked by a monoclonal antibody that inhibits the insulin-receptor kinase, Proc. Natl. Acad. Sci. USA 83: 328 (1986).PubMedCrossRefGoogle Scholar
  43. 43.
    L. Ellis, E. Clauser, D. O. Morgan, M. Edery, R. A. Roth, and W. J. Rutter, Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose, Cell 45: 721 (1986).PubMedCrossRefGoogle Scholar
  44. 44.
    S. Kadota, I. G. Fantus, H. Guyda, and B. Posner, Vanadate augments adipocyte IGF-2 binding in a manner similar but not identical to insulin, Diabetes 35 (Suppl. 1): 53A (1986) [Abstr. No. 211].Google Scholar
  45. 45.
    A. L. Hubbard, D. A. Wall, and A. Ma, Isolation of rat hepatocyte plasma membranes. 1. Presence of the three major domains, J. Cell Biol. 96: 217 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Barry I. Posner
    • 1
  • Masood N. Khan
    • 1
  • John J. M. Bergeron
    • 2
  1. 1.Departments of MedicineMcGill UniversityMontrealCanada
  2. 2.Departments of AnatomyMcGill UniversityMontrealCanada

Personalised recommendations