A New Method for Synthesizing RNA on Silica Supports

  • D. J. Dellinger
  • M. H. Caruthers
Part of the Genetic Engineering book series (GEPM)


Until recently we perceived that there was only a minimal need for methods for chemical synthesis of RNA. This was because almost any RNA sequence could be synthesized using either the SP6 or T7 promoter and an appropriate DNA duplex (1,2). However, several recent developments primarily centered on studies of intron splicing mechanisms (3–6) have led us to initiate a program in this area. We now feel that eventually new chemical methods for synthesizing RNA will be very important as an aid to helping us understand a large number of biochemical processes such as mRNA and tRNA maturation (3–6), conformational analysis of RNA (7), and the mechanisms whereby proteins recognize and bind to RNAs (8). For example, we will probably want to construct mRNA, lariat and branched tetranucleotide structures, tRNAs, viroids, 5S RNA or even ribosomal RNA in such a way that sugar or base analogues are inserted at certain key sites so that their biochemical activity can be studied. We would envisage such a synthesis to involve first preparing the analogue portion of the RNA chemically and the remainder from DNA and either the T7 or SP6 promoter. These segments would then be joined with T4-RNA ligase (1) to form the RNA of interest.


Thin Layer Chromatography Flash Chromatography Calcium Hydride Phosphinic Acid Thin Layer Chromato 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beckett, D. and Uhlenbeck, O.C. (1984) in Oligonucleotide Synthesis, A Practical Approach (Gait, M.J., ed.), pp. 185–197, IRL Press, Oxford, England.Google Scholar
  2. 2.
    Lowary, P., Sampson, J., Milligan, J., Groebe, D. and Uhlenbeck, O.C. (1986) NATO ASI Series A, Vol. 110 (in press).Google Scholar
  3. 3.
    Cech, T.R. (1983) Cell 34, 713–716.CrossRefGoogle Scholar
  4. 4.
    Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. and Altman, S. (1983) Cell 35, 849–857.CrossRefGoogle Scholar
  5. 5.
    Padgett, R.A., Konarska, M.M., Grabowski, P.J., Hardy, S.F. and Sharp, P.A. (1984) Science 225, 898–903.CrossRefGoogle Scholar
  6. 6.
    Ruskin, B., Krainer, A.R., Maniatis, T. and Green, M.R. (1984) Cell 38, 317–331.CrossRefGoogle Scholar
  7. 7.
    Cantor, C.R. and Schimmel, P.R. (1980) Biophysical Chemistry Part I: The Conformation of Biological Macromolecules, Chapter 6, W.H. Freeman, San Francisco, CA.Google Scholar
  8. 8.
    Carey, J.C., Lowary, P.T. and Uhlenbeck, O.C. (1983) Biochemistry 22, 4723–4730.CrossRefGoogle Scholar
  9. 9.
    England, T.E. and Nielson, T. (1976) Can. J. Chem. 54, 1714–1721.CrossRefGoogle Scholar
  10. 10.
    Honda, S., Urakami, K., Koura, K., Terada, K., Sato, Y., Kohno, K., Sekine, M. and Hata, T. (1984) Tetrahedron 40, 153–163.CrossRefGoogle Scholar
  11. 11.
    Lohrman, R., Söll, D., Hayatsu, J., Ohtsuka, E. and Khorana, H.G. (1966) J. Amer. Chem. Soc. 88, 819–829.CrossRefGoogle Scholar
  12. 12.
    van Boom, J.H. and Burgers, P.M.J. (1977) Tetrahedron Lett. 4875–4878.Google Scholar
  13. 13.
    Ohtsuka, E., Ikehara, M. and Söll, D. (1982) Nucl. Acids Res. 10, 6553–6570.CrossRefGoogle Scholar
  14. 14.
    Ohtsuka, E., Fujiyama, K. and Ikehara, M. (1981) Nucl. Acids Res. 9, 3503–3522.CrossRefGoogle Scholar
  15. 15.
    Reese, C.B. (1985) Nucleosides and Nucleotides 4, 117–127.CrossRefGoogle Scholar
  16. 16.
    Debao, W., Kegin, Z., Musui, Q., Zhenke, L., Renlong, W., Changqing, C., Enbi, W., Yingshu, Z., Quingxiang, S., Yunhua, Y., You, W., Haibo, C., Zaiwan, Y., Yunhua, L., Shen, C., Guihai, W. and Meihao, H. (1983) Scientia Sinica (Series B) 26, 464–481.Google Scholar
  17. 17.
    Kempe, T., Chow, F., Sundquist, W.I., Nardi, T.J., Paulson, B. and Peterson, S.M. (1982) Nucl. Acids Res. 10, 6695–6714.CrossRefGoogle Scholar
  18. 18.
    Usman, N., Pon, R.T. and Ogilvie, K.K. (1985) Tetrahedron Lett. 26, 4567–4570.CrossRefGoogle Scholar
  19. 19.
    Ogilvie, K.K., Nemer, M.J. and Gillen, M.F. (1984) Tetrahedron Lett. 25, 1669–1672.CrossRefGoogle Scholar
  20. 20.
    Seliger, H., Zeh, D., Azuru, G. and Chattopadhyaya, J. (1983) Chemica Scripta 22, 95–101.Google Scholar
  21. 21.
    Caruthers, M.H., Dellinger, D., Prosser, K., Barone, A.D., Dubendorff, J.W., Kierzek, R. and Rosendahl, M. (1986) Chemica Scripta 26, 25–30.Google Scholar
  22. 22.
    Ohtsuka, E., Tanaka, S., Tanaka, T., Miyake, T., Markham, A.F., Nakagawa, E., Wakabayashi, T., Taniyama, Y., Nishikawa, S., Fukumoto, R., Uemura, H., Doi, T., Tokunaga, T. and Ikehara, M. (1981) Proc. Nat. Acad. Sci. U.S.A. 78, 5493–5497.CrossRefGoogle Scholar
  23. 23.
    Kaplan, B.E. (1985) Trends in Biotechnology 3, 253–256.CrossRefGoogle Scholar
  24. 24.
    Caruthers, M.H. (1985) Science 230, 281–285.CrossRefGoogle Scholar
  25. 25.
    Caruthers, M.H., Beaucage, S.L., Becker, C., Efcavitch, W., Fisher, E.F., Galluppi, G., Goldman, R., deHaseth, P., Martin, F., Matteucci, M. and Stabinsky, Y. (1982) in Genetic Engineering, Principles and Methods (Setlow, J.K. and Hollaender, A., eds.) Vol. 4, pp. 1–17, Plenum Publ. Corp., New York, NY.Google Scholar
  26. 26.
    Freier, S.M., Kierzek, R., Jaeger, J.A., Sugimoto, N., Caruthers, M.H., Neilson, T. and Turner, D.H. (1986) Proc. Nat. Acad. Sci. U.S.A. (in press).Google Scholar
  27. 27.
    For a complete discussion of this problem, see reference 15 and papers cited therein.Google Scholar
  28. 28.
    van Boom, J.H. and Burgers, P.M.J. (1978) Reel. Trav. Chim. 97, 73–80.CrossRefGoogle Scholar
  29. 29.
    Seliger, H. and Kotschi, U. (1985) Nucleosides and Nucleotides 4, 153–155.CrossRefGoogle Scholar
  30. 30.
    Sekine, M. and Hata, T. (1983) J. Org. Chem. 26, 3011–3014.CrossRefGoogle Scholar
  31. 31.
    Barone, A.D., Tang, J.-Y. and Caruthers, M.H. (1984) Nucl. Acids Res. 12, 4051–4061.CrossRefGoogle Scholar
  32. 32.
    Caruthers, M.H., McBride, L.J., Bracco, L.P. and Dubendorff, J.W. (1985) Nucleosides and Nucleotides 4, 95–105.CrossRefGoogle Scholar
  33. 33.
    Markiewicz, W.T., Biata, E., Adamiak, R.W., Grzeskowiak, K., Kierzek, R., Kraszewski, A., Stawinski, J. and Wiewiorowski, M. (1980) Nucl. Acids Res. Symp. Series 7, 115–127.Google Scholar
  34. 34.
    McBride, L.J., Kierzek, R., Beaucage, S.L. and Caruthers, M.H. (1986) J. Amer. Chem. Soc. 108, 2040–2048.CrossRefGoogle Scholar
  35. 35.
    Markiewicz, W.T., Biata, E. and Kierzek, R. (1984) Bull. Acad. Polon. Sci. 32, 433–451.Google Scholar
  36. 36.
    Kierzek, R., Kopp, D.W., Edmonds, M. and Caruthers, M.H. (1986) Nucl. Acids Res. 14, 4751–4764.CrossRefGoogle Scholar
  37. 37.
    Matteucci, M.D. and Caruthers, M.H. (1981) J. Amer. Chem. Soc. 103, 3185–3191.CrossRefGoogle Scholar
  38. 38.
    Schaller, H., Weimann, G., Lerch, B. and Khorana, H.G. (1963) J. Amer. Chem. Soc. 85, 3821–3827.CrossRefGoogle Scholar
  39. 39.
    Maxam, A.M. and Gilbert, W. (1979) Methods Enzymol. 65, 499–559.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • D. J. Dellinger
    • 1
  • M. H. Caruthers
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of ColoradoBoulderUSA

Personalised recommendations