Advertisement

Alternative Splicing: Mechanistic and Biological Implications of Generating Multiple Proteins from a Single Gene

  • Bernardo Nadal-Ginard
  • Maria E. Gallego
  • Athena Andreadis
Part of the Genetic Engineering book series (GEPM)

Abstract

One of the fundamental characteristics of multicellular organisms is their ability to generate diverse phenotypes among cells sharing a common genome. These specific cell phenotypes result from the regulated expression of protein isoforms that are structurally distinct, developmentally regulated and cell specific. The molecular mechanisms responsible for the generation of this protein diversity fall into two main classes: those that select a particular member of a multigene family for expression at a particular stage, cell type or physiological condition, as it occurs with the myosin heavy chain (1) and globin (2) gene families, and those that produce several proteins from a single gene. These latter mechanisms include DNA rearrangement (3), as it occurs in the immunoglobulin and T cell receptor gene families, and alternative pre-mRNA splicing that is very widespread and uses post-transcriptional steps to accomplish similar ends.

Keywords

Alternative Splice Splice Site Acceptor Site Primary Transcript Splice Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Strehler, E.E., Strehler-Page, M.-A., Perriard, J.-C., Periasamy, M. and Nadal-Ginard, B. (1986) J. Mol. Biol. 190, 291–317.Google Scholar
  2. 2.
    Fritsch, E., Lawn, J.R. and Maniatis, T. (1980) Cell 19, 959–972.Google Scholar
  3. 3.
    Hood, L., Kronenberg, M. and Hunkapiller, T. (1985) Cell 40, 225–229.Google Scholar
  4. 4.
    Padgett, R.A., Grabowski, P.J., Konarska, M.M., Seiler, S. and Sharp, P.A. (1986) Ann. Rev. Biochem. 55, 1119–1150.Google Scholar
  5. 5.
    Nevins, J.R., and Darnell, J.E. (1978) Cell 15, 1477–1493.Google Scholar
  6. 6.
    Nevins, J.R., (1983) Ann. Rev. Biochem. 52, 441–466.Google Scholar
  7. 7.
    Andreadis, A., Gallego, M.E. and Nadal-Ginard, B. (1987) Ann. Rev. Cell Biol, (in press).Google Scholar
  8. 8.
    Hynes, R.O. (1985) Ann. Rev. Cell Biol. 1, 67–90.Google Scholar
  9. 9.
    Nadal-Ginard, B., Breitbart, R.E., Strehler, E.E., Ruiz- Opazo, N. and Periasamy, M. (1986) in Molecular Biology of Muscle Development (Emerson, C., Fischman, D., Nadal-Ginard, B. and Siddiqui, M.A.Q., eds.) pp. 387–410, Liss, New York, NY.Google Scholar
  10. 10.
    Breathnach, R. and Chambon, R. (1981) Ann. Rev. Biochem. 50, 349–383.Google Scholar
  11. 11.
    Cech, T.R. and Bass, B.L. (1986) Ann. Rev. Biochem. 55, 599–629.Google Scholar
  12. 12.
    Leff, S.E., Rosenfeld, M.G. and Evans, R.M. (1986) Ann. Rev. Biochem. 55, 1091–1117.Google Scholar
  13. 13.
    Platt, T. (1986) Ann. Rev. Biochem. 55, 339–372.Google Scholar
  14. 14.
    Frendewey, D. and Keller, W. (1985) Cell 42, 355–367.Google Scholar
  15. 15.
    Mount, S.M. (1982) Nucl. Acids Res. 10, 459–472.Google Scholar
  16. 16.
    Keller, E.B. and Noon, W.A. (1984) Proc. Nat. Acad. Sci. U.S.A. 81, 7417–7420.Google Scholar
  17. 17.
    Munroe, S.H. (1984) Nucl. Acids Res. 12, 8437–8456.Google Scholar
  18. 18.
    Munroe, S.H. and Duthie, R.S. (1986) Nucl. Acids Res. 14, 8447–8465.Google Scholar
  19. 19.
    Nussinov, R. (1980) J. Theor. Biol. 83, 647–662.Google Scholar
  20. 20.
    Seiki, M., Hikikoshi, A., Taniguchi, T. and Yoshida, M. (1985) Science 228, 1532–1534.Google Scholar
  21. 21.
    Solnick, D. (1985) Cell 43, 667–676.Google Scholar
  22. 22.
    van Santen, V.L. and Spritz, R.A. (1985) Proc. Nat. Acad. Sci. U.S.A. 82, 2885–2889.Google Scholar
  23. 23.
    Wieringa, B., Hofer, E. and Weissmann, C. (1984) Cell 37, 915–925.Google Scholar
  24. 24.
    Fu, X.-Y. and Manley, J.L. (1987) Mol. Cell. Biol. 7, 738–748.Google Scholar
  25. 25.
    Peterson, L.M. and Perry, P.R. (1986) Proc. Nat. Acad. Sci. U.S.A. 83, 8883–8887.Google Scholar
  26. 26.
    Aebi, M., Hornig, H., Padgett, R.A., Reiser, J. and Weissmann, C. (1986) Cell 47, 555–565.Google Scholar
  27. 27.
    Krainer, A.R., Maniatis, T., Ruskin, B. and Green, M.R. (1984) Cell 36, 993–1005.Google Scholar
  28. 28.
    Metherall, J.E., Collins, F.S., Pan, J., Weissmann, S.M. and Forget, B. (1986) EMBO J. 5, 2551–2557.Google Scholar
  29. 29.
    Treisman, R., Orkin, S.H. and Maniatis, T. (1983) Nature 302, 591–596.Google Scholar
  30. 30.
    Sharp, P.A. (1980) Cell 23, 643–646.Google Scholar
  31. 31.
    Lang, K.M., van Santen, V.L. and Spritz, R.A. (1986) EMBO J. 4, 1991–1996.Google Scholar
  32. 32.
    Gattoni, R., Stevenin, J., Devilliers, G. and Jacob, M. (1978) FEBS Lett. 90, 318–323.Google Scholar
  33. 33.
    Berget, S.M. and Sharp, P.A. (1979) J. Mol. Biol., 129, 547–565.Google Scholar
  34. 34.
    Roop, D.R«, Nordstrom, J.D., Tsai, S.Y., Tsal, M.-J. and O’Malley, B.W. (1978) Cell 15, 671–685.Google Scholar
  35. 35.
    Ryffel, U., Wyler, T., Muellener, B. and Weber, R. (1980) Cell 19, 53–61.Google Scholar
  36. 36.
    Tsai, M.-J., Ting, A.C., Nordstrom, J.L., Zimmer, W. and O’Malley, B.W. (1980) Cell 22, 219–230.Google Scholar
  37. 37.
    Bovenberg, L.A.R., Van de Meerendonk, M.P.W., Baas, D.R., Steenbergh, M.P., Lips, M.J.C. and Jansz, S.H. (1986) Nucl. Acids Res. 14, 8785–8803.Google Scholar
  38. 38.
    Lang, K.M. and Spritz, R.A. (1986) Abstract, Cold Spring Harbor Laboratory Symposium on RNA Processing, p. 21. Cold Spring Harbor, NY.Google Scholar
  39. 39.
    Mitchell, P.J., Urlaub, G. and Chasin, L. (1986) Mol. Cell. Biol. 6, 1926–1935.Google Scholar
  40. 40.
    Kühne, T., Wieringa, B., Reiser, J. and Weissmann, C. (1983) EMBO J. 2, 727–733.Google Scholar
  41. 41.
    Lang, K.M. and Spritz, R.A. (1983) Science 220, 1351–1355.Google Scholar
  42. 42.
    Somasekhar, M.B. and Mertz, J.E. (1985) Nucl. Acids Res. 13, 5591–5609.Google Scholar
  43. 43.
    Eperon, L.P., Estibeiro, J.P. and Eperon, I.C. (1986) Nature 324, 280–282.Google Scholar
  44. 44.
    Reed, R. and Maniatis, T. (1986) Cell 46, 682–690.Google Scholar
  45. 45.
    van Santen, V.L. and Spritz, R.A. (1986) Nucl. Acids Res. 14, 9911–9926.Google Scholar
  46. 46.
    Breitbart, R.E. and Nadal-Ginard, B. (1987) Cell (submit¬ted).Google Scholar
  47. 47.
    Gilbert, W. (1985) Science 228, 823–824.Google Scholar
  48. 48.
    Milhausen, M., Nelson, R.G., Sather, S., Selkirk, M. and Agabian, N. (1984) Cell 38, 721–729.Google Scholar
  49. 49.
    Murphy, W.J., Watkins, K.P. and Agabian, N. (1986) Cell 47, 517–525.Google Scholar
  50. 50.
    Sutton, R.E. and Boothroyd, J.C. (1986) Cell 47, 527–535.Google Scholar
  51. 51.
    Koller, B., Fromm, H., Galun, E. and Edelman, M. (1986) Cell 48, 111–119.Google Scholar
  52. 52.
    Konarska, M.M., Padgett, R.A. and Sharp, P.A. (1985) Cell 42, 165–171.Google Scholar
  53. 53.
    Solnick, D. (1985) Cell 42, 157–164.Google Scholar
  54. 54.
    Chu, G. and Sharp, P.A. (1981) Nature 289, 378–382.Google Scholar
  55. 55.
    Kaufman, R.J. and Sharp, P.A. (1982) Mol. Cell. Biol. 2, 1304–1319.Google Scholar
  56. 56.
    Vibe-Pedersen, K., Kornblihtt, A.R. and Baralle, F.E. (1984) EMBO J. 3, 2511–2516.Google Scholar
  57. 57.
    Young, R.A., Hagenbuchle, O. and Schibier, U. (1981) Cell 23, 451–458.Google Scholar
  58. 58.
    Greenspan, D.S. and Weissman, S.M. (1985) Mol. Cell. Biol. 5, 1894–1900.Google Scholar
  59. 59.
    Bernstein, A.I., Hansen, C.J., Becker, K.D., Wassenberg, D.R. II, Roche, E.S., Donady, J.J. and Emerson, C.P. (1986) Mol. Cell. Biol. 6, 2511–2519.Google Scholar
  60. 60.
    Rozek, C.E. and Davidson, N. (1983) Cell 32, 23–34.Google Scholar
  61. 61.
    Rozek, C.E. and Davidson, N. (1986) Proc. Nat. Acad. Sci. U.S.A. 83, 2128–2132.Google Scholar
  62. 62.
    Falkenthal, S., Parker, V.P. and Davidson, N. (1985) Proc. Nat. Acad. Sci. U.S.A. 82, 449–453.Google Scholar
  63. 63.
    Nabeshima, Y., Fujii-Kuriyama, Y., Muramatsu, M. and Ogata, K. (1984) Nature 308, 333–338.Google Scholar
  64. 64.
    Periasamy, M., Strehler, E.E., Garfinkel, L.I., Gubits, R.M., Ruiz-Opazo, N. and Nadal-Ginard, B. (1984) J. Biol. Chem. 259, 13595–13604.Google Scholar
  65. 65.
    Strehler, E.E., Periasamy, M., Strehler-Page, M.-A. and Nadal-Ginard, B. (1985) Mol. Cell. Biol. 5, 3168–3182.Google Scholar
  66. 66.
    Karlik, C.C. and Fyrberg, E.A. (1986) Mol. Cell. Biol. 6, 1965–1973.Google Scholar
  67. 67.
    Ruiz-Opazo, N. and Nadal-Ginard, B. (1987) J. Biol. Chem. (in press).Google Scholar
  68. 68.
    Wieczorek, D.F. and Nadal-Ginard, B. (1987) Mol. Cell Biol, (in press).Google Scholar
  69. 69.
    Helfman, M.D., Cheley, S., Kuismanen, E., Finn, A.L. and Kataoka, Y.Y. (1986), Mol. Cell. Biol. 6, 3582–3595.Google Scholar
  70. 70.
    Cooper, T.A. and Ordahl, C.P. (1985) J. Biol. Chem. 260, 11140–11148.Google Scholar
  71. 71.
    Breitbart, R.E., Nguyen, H.T., Medford, R.M., Destree, A.T., Mahdavi, V. and Nadal-Ginard, B. (1985) Cell 41, 67–82.Google Scholar
  72. 72.
    Medford, R.M., Nguyen, H.T., Destree, A.T., Summers, E. and Nadal-Ginard, B. (1984) Cell 38, 409–421.Google Scholar
  73. 73.
    Murray, B.A., Hemperly, J.J., Prediger, E.A., Edelman, G.M. and Cunningham, B.A. (1986) J. Cell. Biol. 102, 189–193.Google Scholar
  74. 74.
    King, C.R. and Piatigorsky, J. (1983) Cell 32, 707–712.Google Scholar
  75. 75.
    King, C.R. and Piatigorsky, J. (1984) J. Biol. Chem. 259, 1822–1826.Google Scholar
  76. 76.
    de Ferra, F., Engh, H., Hudson, L«, Kamholz, J., Puckett, C., Molineaux, S. and Lazzarini, R.A. (1985) Cell 43, 721–727.Google Scholar
  77. 77.
    Takahashi, N., Roach, A., Teplow, D.B., Prusiner, S.B. and Hood, L. (1985) Cell 42, 139–148.Google Scholar
  78. 78.
    Breitbart, R.E., Andreadis, A. and Nadal-Ginard, B. (1987) Ann. Rev. Biochem. (in press).Google Scholar
  79. 79.
    Schwarzbauer, J.E., Tamkun, J.W., Lemischka, I.R. and Hynes, R.O. (1983) Cell 35, 421–431.Google Scholar
  80. 80.
    Tamkun, J.W., Schwarzbauer, J.E. and Hynes, R.O. (1984) Proc. Nat. Acad. Sci. U.S.A. 81, 5140–5144.Google Scholar
  81. 81.
    Crabtree, G.R. and Kant, J.A. (1982) Cell 31, 159–166.Google Scholar
  82. 82.
    Homandberg, G.A., Williams, J.E., Evans, D.B. and Mosesson, M.W. (1985) Thromb. Res. 38, 203–209.Google Scholar
  83. 83.
    Temin, H.M. (1985) Mol. Biol. Evol. 2, 455–468.Google Scholar
  84. 84.
    Laski, F.A., Rio, D.C. and Rubin, G.M. (1986) Cell 44, 7–19.Google Scholar
  85. 85.
    Laughon, A., Boulet, A.M., Bermingham, J.R., Laymon, R.A. and Scott, M.P. (1986) Mol. Cell, Biol. 6, 4676–4689.Google Scholar
  86. 86.
    Schneuwly, S., Kuriowa, A., Baumgartner, P. and Gehring, W.J. (1986) EMBO J. 5, 733–739.Google Scholar
  87. 87.
    Stroeher, L.V., Jorgensen, M.E. and Garber, L.R. (1986) Mol. Cell. Biol. 6, 4667–4675.Google Scholar
  88. 88.
    Chung, D.W. and Davie, E.W. (1984) Biochemistry 23, 4232–4236.Google Scholar
  89. 89.
    Benyajati, C., Spoerel, N., Haymerle, J. and Ashburner, M. (1983) Cell 33, 125–133.Google Scholar
  90. 90.
    Robert, B., Daubas, P., Akimenko, M.-A., Cohen, A., Garner, I., Guenet, J.-L. and Buckingham, M. (1984) Cell 39, 129–140.Google Scholar
  91. 91.
    Leonard, W.J., Depper, J.M., Kanehisa, M., Kronke, M., Peffer, N.J., Sveltik, P.B., Sullivan, M. and Greene, W.C. (1985) Science 230, 633–639.Google Scholar
  92. 92.
    Amara, S.G., Jonas, V. and Evans, R.M. (1982) Nature 298, 240–244.Google Scholar
  93. 93.
    Jonas, V., Lin, C.R., Kawashima, E., Semon, D., Swanson, L.W., Mermod, J.-J., Evans, R.M. and Rosenfeld, M.G. (1985) Proc. Nat. Acad. Sci. U.S.A., 82, 1994–1998.Google Scholar
  94. 94.
    Rosenfeld, M.G., Mermod, J.-J., Amara, S.G. and Evans, R.M. (1984) Science 225, 315–320.Google Scholar
  95. 95.
    Alt, F.W., Bothwell, A.L.M., Knapp, M., Siden, E. and Mather, E. (1980) Cell 20, 293–301.Google Scholar
  96. 96.
    Early, P., Rogers, J., Davis, M., Calame, K. and Bond, M. (1980) Cell 20, 313–319.Google Scholar
  97. 97.
    Maki, R., Roeder, W., Traunecker, A., Sidman, C. and Wabi, M. (1981) Cell 24, 353–365.Google Scholar
  98. 98.
    Rogers, J., Choi, E., Souza, L., Carter, C., Word, C., Kuehl, M., Eisenberg, D. and Wall, R. (1981) Cell 26, 19–28.Google Scholar
  99. 99.
    Zehner, Z.E. and Paterson, B.M. (1983) Proc. Nat. Acad. Sci. U.S.A. 80, 911–915.Google Scholar
  100. 100.
    Gorecka, A., Aksoy, M.O. and Hartshorne, D.J. (1976) Biochem. Biophys. Res. Commun. 71, 325–331.Google Scholar
  101. 101.
    Sobieszek, A. and Shall, J.V. (1976) J. Mol. Biol. 101, 75–92.Google Scholar
  102. 102.
    Chacko, S., Conti, M.A., and Adelstein, R.S. (1977) Proc. Nat. Acad. Sci. U.S.A., 74, 129–133.Google Scholar
  103. 103.
    Basi, G.S., Boardman, M. and Storti, R.V. (1984) Mol. Cell. Biol. 12, 2828–2836.Google Scholar
  104. 104.
    Basi, G.S. and Storti, R.V. (1986) J. Biol. Chem. 261, 817–827.Google Scholar
  105. 105.
    MacLeod, A.R., Houlker, C., Reinach, F.C., Smillie, L.B., Talbot, K., Modi, G. and Walsh, F.S. (1985) Proc. Nat. Acad. Sci. U.S.A. 82, 7835–7839.Google Scholar
  106. 106.
    Caras, I.W., Davitz, M.A., Rhee, L., Weddekk, G., Martin, D.W. and Nussenzweig, V. (1987) Nature 325, 545–549.Google Scholar
  107. 107.
    Craik, C.S., Rutter, W.J. and Fletterick, R. (1983) Science 220, 1125–1129.Google Scholar
  108. 108.
    Breitbart, R.E. and Nadal-Ginard, B. (1986) J. Mol. Biol. 188, 313–323.Google Scholar
  109. 109.
    Cooper, T.A. and Ordahl, C.P. (1986) Abstract, Cold Spring Harbor Laboratory Symposium on RNA Processing, p. 46. Cold Spring Harbor, NY.Google Scholar
  110. 110.
    Garriga, G., Bertrand, H. and Lambowitz, A.M. (1984) Cell 36, 623–634.Google Scholar
  111. 111.
    Karlik, C.C. and Fyrberg, E.A. (1985) Cell 41, 57–66.Google Scholar
  112. 112.
    Kramer, A., Keller, W., Appel, B. and Luhrmann, R. (1984) Cell 38, 299–307.Google Scholar
  113. 113.
    Zhuang, Y. and Weiner, A.M. (1986) Cell 46, 827–835.Google Scholar
  114. 114.
    Forbes, D.J., Kirschner, M.W., Caput, D., Dahlberg, J.E. and Lund, E. (1984) Cell 38, 681–689.Google Scholar
  115. 115.
    Leonard, W.J., Depper, J.M., Crabtree, G.R., Rudikoff, S., Pumphrey, J., Robb, R.J., Kronke, M., Sveltik, P.B., Peffer, N.J., Waldmann, T.A. and Greene, W.C. (1984) Nature 311, 626–631.Google Scholar
  116. 116.
    Pearlstone, J.R. and Smillie, L.B. (1982) J. Biol. Chem. 257, 10587–10592.Google Scholar
  117. 117.
    Huxley, H.E. (1953) Proc. Roy. Soc. London., Ser. B 141, 59–62.Google Scholar
  118. 118.
    Spudich, J.A., Krön, S.J. and Sheetz, M.P. (1985) Nature 315, 584–586.Google Scholar
  119. 119.
    Humphries, S.M., Akiyama, K.S., Komoriya, A., Olden, K. and Yamada, M.K. (1986) J. Cell. Biol. 103, 2637–2647.Google Scholar
  120. 120.
    McKeown, M., MacLeod, C. and Firtel, R. (1982) in Muscle Development: Molecular and Cellular Control (Pearson, M.L. and Epstein, H.F., eds.) pp. 61–76. Cold Spring Harbor Laboratory, NY.Google Scholar
  121. 121.
    Izumo, S., Nadal-Ginard, B. and Mahdavi, V. (1986) Science 231, 597–600.Google Scholar
  122. 122.
    Brown, D.D. (1984) Cell 37, 359–365.Google Scholar
  123. 123.
    Yisraeli, J. and Szyf, M. (1984) in DNA Methylation (Razin, A., Cedar, H. and Riggs, A.D., eds.), pp. 352–378, Springer-Verlag, New York, NY.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Bernardo Nadal-Ginard
    • 1
    • 2
    • 3
  • Maria E. Gallego
    • 1
    • 2
    • 3
  • Athena Andreadis
    • 1
    • 2
    • 3
  1. 1.Laboratory of Molecular and Cellular CardiologyHoward Hughes Medical InstituteUSA
  2. 2.Department of CardiologyChildren’s HospitalUSA
  3. 3.Departments of Pediatrics, Physiology and BiophysicsHarvard Medical SchoolBostonUSA

Personalised recommendations