Carbon-13 Nuclear Magnetic Resonance Spectrum Simulation

  • Peter C. Jurs
  • Debra S. Egolf
Part of the Modern Analytical Chemistry book series (MOAC)

Abstract

Carbon-13 nuclear magnetic resonance (CNMR) spectroscopy is a powerful tool for organic structure elucidation because the signals observed are directly related to the immediate surroundings of the skeletal carbon atoms. Therefore, a great deal of information directly relevant to the skeletal arrangement of the structure is accessible. Modern NMR spectrometers generate huge quantities of data rapidly, increasing the demand for tools to aid the spectroscopist in the analysis of NMR data.

Keywords

Hydroxyl Benzene Alkane Paraffin Calculated Carbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. B. Gray, “Computer Assisted Analysis of Carbon-13 NMR Spectral Data,” Prog. NMR Spectrosc. 15, 201–248 (1982).CrossRefGoogle Scholar
  2. 2.
    R. W. Bally, D. Van Krimpen, P. Cleij and H. A. Van’t Klooster, “An Automated Library Search System for C-13 N.M.R. Spectra Based on the Reproducibility of Chemical Shifts,” Anal. Chim. Acta 157, 227–243 (1984).CrossRefGoogle Scholar
  3. 3.
    C. A. Shelley and M. E. Munk, “Computer Prediction of Substructures from Carbon-13 Nuclear Magnetic Resonance Spectra,” Anal. Chem. 54, 516–521 (1982).CrossRefGoogle Scholar
  4. 4.
    C. W. Crandell, N. A. B. Gray and D. H. Smith, “Structure Evaluation Using Predicted C-13 Spectra,” J. Chem. Inf. Comp. Sci. 22, 48–57 (1982).CrossRefGoogle Scholar
  5. 5.
    D. Johnels, U. Edlund, H. Grahn, S. Hellberg, M. Sjostrom, S. Wold, S. Clementi and W. J. Dunn, “Clustering of Aryl Carbon-13 Nuclear Magnetic Resonance Substituent Chemical Shifts. A Multivariate Data Analysis Using Principal Components,” J. Chem. Soc. Perkin Trans. II 1983, 863–871.Google Scholar
  6. 6.
    D. Johnels, U. Edlund, E. Johansson and S. Wold, “A Multivariate Method for Carbon-13 NMR Chemical Shift Predictions Using Partial Least-Squares Data Analysis,” J. Magn. Reson. 55, 316–321 (1983).CrossRefGoogle Scholar
  7. 7.
    O. Sudmeijer, A. E. Wilson and G. R. Hays, “Calculation of C-13 NMR Chemical Shifts for Aromatic Carbons in Polyalkylated Benzenes,” Org. Mag. Res. 22, 459–463 (1984).CrossRefGoogle Scholar
  8. 8.
    H. N. Cheng and S. J. Ellingsen, “Carbon-13 Nuclear Magnetic Resonance Spectral Interpretation by a Computerized Substituent Chemical Shift Method,” J. Chem. Inf. Comp. Sci. 23, 197–203 (1983).CrossRefGoogle Scholar
  9. 9.
    D. M. Grant and E. G. Paul, “Carbon-13 Magnetic Resonance. II. Chemical Shift Data for the Alkanes,” J. Am. Chem. Soc. 86, 2984–2990 (1964).CrossRefGoogle Scholar
  10. 10.
    L. P. Lindeman and J. Q. Adams, “Carbon-13 Nuclear Magnetic Resonance Spectrometry. Chemical Shifts for the Paraffins through C-9,” Anal. Chem. 43, 1245–1252 (1971).CrossRefGoogle Scholar
  11. 11.
    G. W. Small and P. C. Jurs, “Interactive Computer System for the Simulation of Carbon-13 Nuclear Magnetic Resonance Spectra,” Anal. Chem. 55, 1121–1127 (1983).CrossRefGoogle Scholar
  12. 12.
    G. W. Small and P. C. Jurs, “Determination of Topological Similarity of Carbon Atoms in the Simulation of Carbon-13 Nuclear Magnetic Resonance Spectra,” Anal. Chem. 56, 1314–1323 (1984).CrossRefGoogle Scholar
  13. 13.
    J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles, Addison-Wesley, Reading, Massachusetts, 1974.Google Scholar
  14. 14.
    U. Burkert and N. L. Allinger, Molecular Mechanics, American Chemical Society, Washington, DC, 1982.Google Scholar
  15. 15.
    L. B. Kier and L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic, New York, 1976.Google Scholar
  16. 16.
    G. DelRe, “A Simple MO-LCAO Method for the Calculation of Charge Distributions in Saturated Organic Molecules,” J. Chem. Soc. 1958, 4031–4040.Google Scholar
  17. 17.
    D. A. Belsley, E. Kuh, and R. E. Welsch, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, Wiley-Interscience, New York, 1980.CrossRefGoogle Scholar
  18. 18.
    G. W. Small, T. R. Stouch and P. C. Jurs, “Automated Selection of Models for the Simulation of Carbon-13 Nuclear Magnetic Resonance Spectra,” Anal. Chem. 56, 2314–2319 (1984).CrossRefGoogle Scholar
  19. 19.
    G. W. Small and P. C. Jurs, “Data Reduction in the Simulation of Carbon-13 Nuclear Magnetic Resonance Spectra of Steroids,” Anal. Chem. 56, 2307–2314 (1984).CrossRefGoogle Scholar
  20. 20.
    D. S. Egolf and P. C. Jurs, “Simulation of Carbon-13 Nuclear Magnetic Resonance Spectra of Substituted Cyclopentanes and Cyclopentanols,” in preparation.Google Scholar
  21. 21.
    M. Christi, H. J. Reich and J. D. Roberts, “Nuclear Magnetic Resonance Spectroscopy. Carbon-13 Chemical Shifts of Methylcyclopentanes, Cyclopentanols, and Cyclopentyl Acetates,” J. Am. Chem. Soc. 93, 3463–3468 (1971).CrossRefGoogle Scholar
  22. 22.
    Sadtler Standard Carbon-13 NMR Spectra, Sadtler Research Laboratories, Inc., Philadelphia, 1978.Google Scholar
  23. 23.
    H. J. Schneider, N. Nguyen-Ba and F. Thomas, “Force Field and 13C-NMR Investigations of Substituted Cyclopentanes. A Concept for the Adaption of 13C NMR Shifts to Varying Torsional Arrangements in Flexible Conformers,” Tetrahedron 38, 2327–2337 (1982).CrossRefGoogle Scholar
  24. 24.
    R. G. S. Ritchie, N. Cyr, B. Korsch, H. J. Koch and A. S. Perlin, “Carbon-13 Chemical Shifts of Furanosides and Cyclopentanols. Configurational and Conformational Influences,” Can. J. Chem. 53, 1424–1433 (1975).CrossRefGoogle Scholar
  25. 25.
    G. W. Small and P. C. Jurs, “Simulation of Carbon-13 Nuclear Magnetic Resonance Spectra of Cycloalkanols with Computer-Based Descriptors,” Anal. Chem. 55, 1128–1134 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Peter C. Jurs
    • 1
  • Debra S. Egolf
    • 1
  1. 1.Department of Chemistry, 152 Davey LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations