Novel Advances in Pattern Recognition and Knowledge-Based Methods in Infrared Spectroscopy

  • Hugh B. Woodruff
Part of the Modern Analytical Chemistry book series (MOAC)


Theoreticians can calculate exactly the frequencies at which infrared radiation will be absorbed by a given molecule, assuming the spatial arrangements of the atoms and the strengths of the bonds are known. This assumption is realistic for very small or highly symmetrical larger molecules. For those types of molecules, excellent theoretical treatments have been made. However, the vast majority of molecules have vibrational characteristics and interatomic interactions that are too complex for adequate theoretical treatment, so empirical treatment of the data becomes necessary.


Inference Engine Fusaric Acid Pair Rule Probability Histogram Infrared Spectral Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. A. Gribov, “Computational Spectroscopy: Status of Problem,” J. Molec. Struct. 113, 11–23 (1984).CrossRefGoogle Scholar
  2. 2.
    L. E. Kuentzel, “New Codes for Hollerith-Type Punched Cards,” Anal. Chem. 23, 1413–1418 (1951).CrossRefGoogle Scholar
  3. 3.
    A. W. Baker, N. Wright and A. Opler, “Automatic Infrared Punched-Card Identification of Mixtures,” Anal. Chem. 25, 1457–1460 (1953).CrossRefGoogle Scholar
  4. 4.
    R. A. Sparks, “Storage and Retrieval of Wyandotte-ASTM Infrared Spectral Data Using an IBM 1401 Computer,” American Society for Testing and Materials, Philadelphia, Pennsylvania (1964).Google Scholar
  5. 5.
    L. D. Smithson, L. B. Fall, F. D. Pitts and F. W. Bauer, “Storage and Retrieval of Wyandotte-ASTM Infrared Spectral Data Using a 7090 Computer,” Tech. Doc. Rept. No. RTD-TDR-63–4265, Research and Technology Division, Wright Patterson AFB, Ohio (1964).Google Scholar
  6. 6.
    T. A. Entzminger and E. A. Diephaus, “Storage and Retrieval of Wyandotte-ASTM Infrared Spectral Data Using a Honeywell 400 Computer,” U.S. Public Health Service, Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio (1964).Google Scholar
  7. 7.
    D. H. Anderson and G. L. Covert, “Computer Search System for Retrieval of Infrared Data,” Anal. Chem. 39, 1288–1293 (1967).CrossRefGoogle Scholar
  8. 8.
    L. H. Cross, J. Haw and D. J. Shields, in Molecular Spectroscopy, Proceedings of a Conference Held at Brighton, England, 17–19 April 1968 (P. Hepple, ed.), The Institute of Petroleum, London, England, 1968, pp. 189–205.Google Scholar
  9. 9.
    G. A. Massios, “Infrared Spectral Data Retrieval by Computer,” Am. Lab. 3(9), 55–61 (1971).Google Scholar
  10. 10.
    D. S. Erley, “Fast Searching System for the ASTM Infrared Data File,” Anal. Chem. 40, 894–898 (1968).CrossRefGoogle Scholar
  11. 11.
    F. E. Lytle and T. L. Brazie, “Effects of Data Compression on Computer Searchable Files,” Anal. Chem. 42, 1532–1535 (1970).CrossRefGoogle Scholar
  12. 12.
    D. S. Erley, “A Quantitative Evaluation of Several Infrared Searching Systems,” Appl. Spectrosc. 25, 200–202 (1971).CrossRefGoogle Scholar
  13. 13.
    F. E. Lytle, “Computerized Searching of Inverted Files,” Anal. Chem. 42, 355–357 (1970).CrossRefGoogle Scholar
  14. 14.
    P. C. Jurs, “Near Optimum Computer Searching of Information Files Using Hash Coding,” Anal. Chem. 43, 364–367 (1971).CrossRefGoogle Scholar
  15. 15.
    Z. Hippe and R. Hippe, “Computer Retrieval of Spectral Data,” Appl. Spectrosc. Rev. 16, 135–186 (1980).CrossRefGoogle Scholar
  16. 16.
    J. Zupan, “The Library Search in Analytical Chemistry,” Fresenius Z. Anal. Chem. 313, 466–472 (1982).CrossRefGoogle Scholar
  17. 17.
    R. J. Obremski and J. W. Mohar, “Computerized Infrared Techniques for Pharmaceutical-Formulation Quality Control,” Pharm. Technol. 3(4), 59–66 (1979).Google Scholar
  18. 18.
    R. E. Anacreon and S. C. Pattacini, “Applications of an Infrared Data Processing System,” Am. Lab. 12(2), 97–105 (1980).Google Scholar
  19. 19.
    M. Razinger, M. Penca, J. Zupan and M. Janezic, “Computerized Search System Based on Digitized Infrared Spectra,” Fresenius Z. Anal. Chem. 313, 496–499 (1982).CrossRefGoogle Scholar
  20. 20.
    S. R. Lowry, D. A. Huppler and C. R. Anderson, “Database Development and Search Algorithms for Automated Infrared Spectral Identification,” J. Chem. Inf. Comput. Sci. 25, 235–241 (1985).CrossRefGoogle Scholar
  21. 21.
    J. T. Clerc and G. Szekely, “Spectroscopic Data Banks,” Trends Anal. Chem. 2(3), 50–53 (1983).CrossRefGoogle Scholar
  22. 22.
    S. R. Heller, “The Chemical Information System and Spectral Database,” J. Chem. Inf. Comput. Sci. 25, 224–231 (1985).CrossRefGoogle Scholar
  23. 23.
    J. R. Rumble Jr. and D. R. Lide Jr., “Chemical and Spectral Databases: A Look into the Future,” J. Chem. Inf. Comput. Sci. 25, 231–235 (1985).CrossRefGoogle Scholar
  24. 24.
    M. Ruprecht and J. T. Clerc, “Performance Analysis of a Simple Infrared Library Search System,” J. Chem. Inf. Comput. Sci. 25, 241–244 (1985).CrossRefGoogle Scholar
  25. 25.
    L. J. Bellamy, The Infrared Spectra of Complex Molecules, Wiley, New York, 1958.Google Scholar
  26. 26.
    K. Nakanishi, Infrared Absorption SpectroscopyPractical, Holden-Day, San Francisco, 1962.Google Scholar
  27. 27.
    N. B. Colthup, L. H. Daly and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic, New York, 1964.Google Scholar
  28. 28.
    D. Dolphin and A. E. Wick, Tabulation of Infrared Spectral Data, Wiley, New York, 1977.Google Scholar
  29. 29.
    R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometric Identification of Organic Compounds (4th edn.), Wiley, New York, 1981.Google Scholar
  30. 30.
    N. J. Nilsson, Learning Machines, McGraw-Hill, New York, 1965.Google Scholar
  31. 31.
    R. O. Duda and P. E. Hart, Pattern Recognition and Scene Analysis, Wiley, New York, 1973.Google Scholar
  32. 32.
    Yi-Tzuu Chien, Interactive Pattern Recognition, Dekker, New York, 1978.Google Scholar
  33. 33.
    P. C. Jurs and T. L. Isenhour, Chemical Applications of Pattern Recognition, Wiley, New York, 1975.Google Scholar
  34. 34.
    B. R. Kowalski (ed.), Chemometrics: Theory and Application, ACS Symposium Series 52, American Chemical Society, Washington, D.C., 1977.Google Scholar
  35. 35.
    K. Varmuza, Lecture Notes in Chemistry 21: Pattern Recognition in Chemistry, Springer-Verlag, New York, 1980.CrossRefGoogle Scholar
  36. 36.
    K. Varmuza, “Pattern Recognition in Analytical Chemistry,” Anal. Chim. Acta 122, 227–240 (1980).CrossRefGoogle Scholar
  37. 37.
    L. Kryger, “Interpretation of Analytical Chemical Information by Pattern Recognition Methods—A Survey,” Talanta 28, 871–887 (1981).CrossRefGoogle Scholar
  38. 38.
    L. S. Ramos, K. R. Beebe, W. P. Carey, E. Sanchez, B. C. Erickson, B. E. Wilson, L. E. Wangen and B. R. Kowalski, “Chemometrics,” Anal. Chem. 58(5), 294R–315R (1986).CrossRefGoogle Scholar
  39. 39.
    P. C. Jurs, “Pattern Recognition Used to Investigate Multivariate Data in Analytical Chemistry,” Science 232, 1219–1224 (1986).CrossRefGoogle Scholar
  40. 40.
    M. P. Derde and D. L. Massart, “Extraction of Information from Large Data Sets by Pattern Recognition,” Fresenius Z. Anal. Chem. 313, 484–495 (1982).CrossRefGoogle Scholar
  41. 41.
    H. B. Woodruff, G. L. Ritter, S. R. Lowry and T. L. Isenhour, “Pattern Recognition Methods for the Classification of Binary Infrared Spectral Data,” Appl. Spectrosc. 30, 213 – 216 (1976).CrossRefGoogle Scholar
  42. 42.
    H. B. Woodruff, S. R. Lowry and T. L. Isenhour, “A Comparison of Two Discriminant Functions for Classifying Binary Infrared Data,” Appl Spectrosc.29, 226–230 (1975).CrossRefGoogle Scholar
  43. 43.
    L. Domokos, I. Frank, G. Matolcsy and G. Jalsovszky, “Pattern Recognition Applied to Vapor-Phase Infrared Spectra,” Anal. Chim. Acta 154, 181–189 (1983).CrossRefGoogle Scholar
  44. 44.
    D. S. Frankel, “Pattern Recognition of Fourier Transform Infrared Spectra of Organic Compounds,” Anal Chem. 56, 1011–1014 (1984).CrossRefGoogle Scholar
  45. 45.
    H. B. Woodruff and M. E. Munk, “Computer-Assisted Interpretation of Infrared Spectra,” Anal Chim. Acta 95, 13–23 (1977).CrossRefGoogle Scholar
  46. 46.
    R. Davis, “Knowledge-Based Systems,” Science 231, 957–963 (1986).CrossRefGoogle Scholar
  47. 47.
    R. O. Duda and E. H. Shortliffe, “Expert Systems Research,” Science 220, 261–268 (1983).CrossRefGoogle Scholar
  48. 48.
    D. S. Prerau, “Selection of an Appropriate Domain for an Expert System,” AI Magazine 6(3), 26–30 (1985).Google Scholar
  49. 49.
    F. Hayes-Roth, D. A. Waterman and D. B. Lenat (eds.), Building Expert Systems, Addison-Wesley, Reading, Massachusetts, 1983.Google Scholar
  50. 50.
    T. H. Pierce and B. A. Hohne (eds.), Artificial Intelligence Applications in Chemistry, ACS Symposium Series 306, American Chemical Society, Washington, D.C., 1986.Google Scholar
  51. 51.
    N. A. B. Gray, “Structural Interpretation of Spectra,” Anal. Chem. 47, 2426–2431 (1975).CrossRefGoogle Scholar
  52. 52.
    H. B. Woodruff and M. E. Munk, “A Computerized Infrared Spectral Interpreter as a Tool in Structure Elucidation of Natural Products, J. Org. Chem. 42, 1761–1767 (1977).CrossRefGoogle Scholar
  53. 53.
    T. Visser and J. H. Van Der Maas, “Systematic Computer-Aided Interpretation of Infrared and Raman Vibrational Spectra Based on the crise Program,” Anal Chim. Acta 122, 363–372 (1980).CrossRefGoogle Scholar
  54. 54.
    W. R. Leupold, C. Domingo, W. Niggemann and B. Schrader, “Automatic Reduction and Evaluation of Infrared and Raman Spectra,” Fresenius Z. Anal. Chem. 303, 337–348 (1980).CrossRefGoogle Scholar
  55. 55.
    H. B. Woodruff and G. M. Smith, “Computer Program for the Analysis of Infrared Spectra,” Anal. Chem. 52, 2321–2327 (1980).CrossRefGoogle Scholar
  56. 56.
    H. B. Woodruff and G. M. Smith, “Generating Rules for pairs—A Computerized Infrared Spectral Interpreter,” Anal. Chim. Acta 133, 545–553 (1981).CrossRefGoogle Scholar
  57. 57.
    G. Szalontai, Z. Csapo, and Zs. Recsey, “Computer-Aided Structure Elucidation, III: Extended Version of assigner System,” Acta Chim. Acad. Sci. Hung. 111, 249–258 (1982).Google Scholar
  58. 58.
    S. Sasaki, H. Abe, I. Fujiwara, T. Yamasaki, Z. Hippe, G. Debenska, J. Duliban and B. Guzowska-Swider, “Recent Problems of Application of Artificial Intelligence in Computer-Aided Elucidation of Chemical Structures,” Chem. Analityczna 27, 171–181 (1982).Google Scholar
  59. 59.
    R. W. Hannah, J. P. Coates, A. Savitzky, M. A. Ford and H. V. Carter, “Method and Apparatus for Determining the Nature of an Unknown Chemical Substance,” U.S. Patent 4,365,303 (1982).Google Scholar
  60. 60.
    M. O. Trulson and M. E. Munk, “Table-Driven Procedure for Infrared Spectrum Interpretation” Anal. Chem. 55, 2137–2142 (1983).CrossRefGoogle Scholar
  61. 61.
    H. Jamroz and Z. Latek, “The Algorithm of Substructure Recognition in Organic Compounds by the Artificial Intelligence Method on the Basis of IR-Spectra,” J. Molec. Struct. 115, 277–280 (1984).CrossRefGoogle Scholar
  62. 62.
    G. M. Smith and H. B. Woodruff, “Development of a Computer Language and Compiler for Expressing the Rules of Infrared Spectral Interpretation,” J. Chem. Inf. Comput. Sci. 24, 33–39 (1984).CrossRefGoogle Scholar
  63. 63.
    H. J. Luinge and H. A. Van’t Klooster, “Artificial Intelligence Used for the Interpretation of Combined Spectral Data,” Trends Anal. Chem. 4(10), 242–243 (1985).CrossRefGoogle Scholar
  64. 64.
    Z. Hippe, “Problem-Solving Methods in Computer-Aided Organic Structure Determination,” J. Chem. Inf. Comput. Sci. 25, 344–350 (1985).CrossRefGoogle Scholar
  65. 65.
    B. Curry, in Artificial Intelligence Applications in Chemistry (T. H. Pierce and B. A. Hohne, eds.), American Chemical Society, Washington, D.C., 1986, pp. 350–364.CrossRefGoogle Scholar
  66. 66.
    S. A. Tomellini, J. M. Stevenson, and H. B. Woodruff, “Rules for Computerized Interpretation of Vapor-Phase Infrared Spectra,” Anal. Chem. 56, 67–70 (1984).CrossRefGoogle Scholar
  67. 67.
    H. B. Woodruff, in Progress in Industrial Microbiology (M. E. Bushell, ed.), Elsevier, Amsterdam, 1983, pp. 71–108.Google Scholar
  68. 68.
    A. B. Delfino and A. Buchs, “Mass Spectra and Computers,” Fortschr. Chem. Forsch. 39, 109–137 (1973).CrossRefGoogle Scholar
  69. 69.
    N. A. B. Gray and T. O. Gronneberg, “Programs for Spectrum Classification and Screening of Gas Chromatographic-Mass Spectrometric Data on a Laboratory Computer,” Anal. Chem. 47, 419–424 (1975).CrossRefGoogle Scholar
  70. 70.
    W. T. Wipke, H. Braun, G. Smith, F. Choplin and W. Sieber, in Computer-Assisted Organic Synthesis (W. T. Wipke and W. J. Howe, ed.), American Chemical Society, Washington, D.C., 1977, pp. 97–127.CrossRefGoogle Scholar
  71. 71.
    S. A. Tomellini, D. D. Saperstein, J. M. Stevenson, G. M. Smith, H. B. Woodruff and P. F. Seelig, “Automated Interpretation of Infrared Spectra with an Instrument-Based Minicomputer,” Anal. Chem. 53, 2367–2369 (1981).CrossRefGoogle Scholar
  72. 72.
    M. A. Puskar, S. P. Levine and S. R. Lowry, “Computerized Infrared Spectral Identification of Compounds Frequently Found at Hazardous Waste Sites,” Anal. Chem. 58, 1156–1162 (1986).CrossRefGoogle Scholar
  73. 73.
    J. A. deHaseth and K. A. Mir, “A Minicomputer Based Structure Elucidation Program,” paper No. 216, Pittsburgh Conference and Exposition on Analytical Chemistry and Applied Spectroscopy, February 25–March 1, 1985.Google Scholar
  74. 74.
    D. D. Saperstein, “Methodology for Evaluating and Optimizing Infrared Interpretations,” Appl. Spectrosc. 40, 344–348 (1986).CrossRefGoogle Scholar
  75. 75.
    S. A. Liebman, P. J. Duff, M. A. Schroeder, R. A. Fifer, and A. M. Harper, in Artificial Intelligence Applications in Chemistry (T. H. Pierce and B. A. Hohne, eds.), American Chemical Society, Washington, D.C., 1986, pp. 365–384.CrossRefGoogle Scholar
  76. 76.
    S. A. Tomellini, R. A. Hartwick, and H. B. Woodruff, “Automatic Tracing and Presentation of Interpretation Rules Used by pairs: Program for the Analysis of IR Spectra,” Appl. Spectrosc. 39, 331–333 (1985).CrossRefGoogle Scholar
  77. 77.
    D. Welti, Infrared Vapor Spectra, Heyden, New York, 1970.Google Scholar
  78. 78.
    S. A. Tomellini, R. A. Hartwick, J. M. Stevenson, and H. B. Woodruff, “Automated Rule Generation for the Program for the Analysis of IR Spectra (pairs), Anal. Chim. Acta 162, 227–240 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Hugh B. Woodruff
    • 1
  1. 1.Merck Sharp & Dohme Research LaboratoriesRahwayUSA

Personalised recommendations