Regulation of Messenger RNA Translation at the Elongation Step during Estradiol-Induced Vitellogenin Synthesis in Avian Liver

  • Lee Gehrke
  • Joseph Ilan


Translation of all internal messenger RNA (mRNA) codons is described as polypeptide chain elongation, a process that requires aminoacylated transfer RNAs (tRNAs) (excluding tRNA-Metf), GTP, and elongation factors in addition to mRNA and ribosomes. The two major steps in polypeptide chain elongation are, first, the binding of aminoacyl-tRNA to ribosomes at the ribosomal A site, followed by peptidyltransferase, and, second, translocation of the newly formed peptidyl-tRNA from the A position to the ribosomal P site. The structures of ribosomal particles, initiator tRNAs, and termination factors are somewhat different in prokaryotes and eukaryotes; however, their basic roles in translation are quitter similar, especially in terms of polypeptide elongation. Eukaryotic systems will be emphasized in this discussion. The purpose of this chapter is to first summarize in Section 2 current information regarding polypeptide elongation by(1) citing representative examples of systems in which the parameter has been analyzed experimentally, (2) describing methodology used to measure the elongation parameter, and (3) describing in some detail the apparent nonuniform rates of polypeptide elongation in avian liver that occur after administration of 17α-estradiol. Section 3 focuses on the regulatory mechanisms thay may be involved in modulating the elongation step. Section 4 closes with comments on the role of regulation at the level of polypeptide chain elongation in overall gene regulation. A recent review addresses the more global aspects of eukaryonic protein synthesis.1


Elongation Rate mRNA Translation Induction Cycle Nascent Polypeptide Chain Radioactive Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moldave, K., 1985, Annu. Rev. Biochem. 54: 1109–1149.PubMedCrossRefGoogle Scholar
  2. 2.
    Palmiter, R. D., 1975, Cell 4: 189–197.PubMedCrossRefGoogle Scholar
  3. 3.
    Bergmann, J. E., and Lodish, H. F., 1979, J. Biol. Chem. 254:11,927–11,937Google Scholar
  4. 4.
    Craig, N., 1975, Cell 4: 329–335.PubMedCrossRefGoogle Scholar
  5. 5.
    Fan, H., and Penman, S., 1970, J. Mol. Biol. 50: 655–670.PubMedCrossRefGoogle Scholar
  6. 6.
    Baumgartel, D. M., and Howell, S. H., 1977, Biochemistry 16: 3182–3189.PubMedCrossRefGoogle Scholar
  7. 7.
    Scornik, O. A., 1974, J. Biol. Chem. 249: 3876–3883.PubMedGoogle Scholar
  8. 8.
    Calzone, F. J., Angerer, K. C., and Gorovsky, M. A., 1983, J. Biol. Chem. 258: 6887–6898.PubMedGoogle Scholar
  9. 9.
    Ballinger, D. G., and Pardue, M. L., 1983, Cell 33: 103–114.PubMedCrossRefGoogle Scholar
  10. 10.
    Brandis, J. W., and Raff, R. R., 1979, Nature (London) 278: 467–469.CrossRefGoogle Scholar
  11. 11.
    Hille, M. B., and Albers, A. A., 1979, Nature (London) 278: 469–471.CrossRefGoogle Scholar
  12. 12.
    Ilan J., Pierce, D., Hochberg, A. A., Folman, R., and Gyves, M. T., 1984, Proc. Natl. Acad. Sci. U.S.A. 81: 1366–1370.PubMedCrossRefGoogle Scholar
  13. 13.
    Nielsen, J. B. K., Plant, P. W., and Haschemeyer, A. E. V., 1976, Nature (London) 264: 804–806.CrossRefGoogle Scholar
  14. 14.
    Roper, M. D., and Wicks, W. D., 1978, Proc. Natl. Acad. Sci. U.S.A. 75: 140–144.PubMedCrossRefGoogle Scholar
  15. 15.
    Whelly, S. M., and Barker, K. L., 1974, Biochemistry 13: 341–346.PubMedCrossRefGoogle Scholar
  16. 16.
    Gehrke, L., Bast, R. E., and Ilan, J., 1981, J. Biol. Chem. 256: 2514–2521.PubMedGoogle Scholar
  17. 17.
    Gehrke, L., Bast, R. E., and Ilan, J., 1981, J. Biol. Chem. 256: 2522–2530.PubMedGoogle Scholar
  18. 18.
    Oleinick, N., and Salengo, J. J., 1976, Anal. Biochem. 73: 27–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Moldave, K., Harris, J., Sabow, T., and Sadnik, I., 1979, Fed. Proc. Fed. Am. Soc. Exp. Biol. 38: 1979–1983.Google Scholar
  20. 20.
    Lodish, H. F., 1976, Annu. Rev. Biochem. 45: 39–72.PubMedCrossRefGoogle Scholar
  21. 21.
    Kabat, D., and Chappel, M. R., 1977, J. Biol. Chem. 252: 2684–2690.PubMedGoogle Scholar
  22. 22.
    Alton, T. H., and Lodish, H. F., 1977, Cell 12: 301–310.PubMedCrossRefGoogle Scholar
  23. 23.
    Ray, B. K., Brendler, T. G., Adya, S., Daniels-McQueen, S., Miller, J. K., Hershey, J. W. B., Grifo, J. A., Merrick, W. C., and Thach, R. E., 1983, Proc. Natl. Acad. Sci. U.S.A. 80: 663–667.PubMedCrossRefGoogle Scholar
  24. 24.
    Chavancy, G., and Garel, J.-P., 1981, Biochimie 63: 187–195.PubMedCrossRefGoogle Scholar
  25. 25.
    Lodish, H. F., and Jacobsen, M., 1972, J. Biol. Chem. 247: 3622–3629.PubMedGoogle Scholar
  26. 26.
    Palmiter, R. D., 1972, J. Biol. Chem. 247: 6770–6780.PubMedGoogle Scholar
  27. 27.
    Fischer, I., Arfin, S. M., and Moldave, K., 1980, Biochemistry 19: 1417–1425.PubMedCrossRefGoogle Scholar
  28. 28.
    Godefroy-Colburn, T., and Thach, R. E., 1981, J. Biol. Chem 256: 11,762–11,773.Google Scholar
  29. 29.
    Bergink, E. W., Wallace, R. A., Van de Berg, J. A., Bos, E., Gruber, M., and AB, G., 1974, Am. Zool. 14: 1193–1197.Google Scholar
  30. 30.
    Tata, J. R., 1976, Cell 9: 1–14.PubMedCrossRefGoogle Scholar
  31. 31.
    Tarlow, D. M., Watkins, P. A., Reed, R. E., Miller, R. S., Zwergel, E. E., and Lane, M. D., 1977, J. Cell Biol. 73: 332–353.PubMedCrossRefGoogle Scholar
  32. 32.
    Deeley, R. G., Gordon, J. I., Burns, A. T. H., Mullinix, K. P., Bina-Stein, M., andGoldberger, R. F., 1977, J. Biol. Chem, 252: 8310–8319.PubMedGoogle Scholar
  33. 33.
    Greengard, O., Gordon, M., Smith, M. A., and Acs, G., 1964, J. Biol. Chem. 239: 2079–2082.PubMedGoogle Scholar
  34. 34.
    Jost, J., Keller, R., and Dierks-Ventling, C., 1973, J. Biol. Chem. 248: 5262–5266.PubMedGoogle Scholar
  35. 35.
    Màenpàâ, P. H., 1976, Biochem. Biophys. Res. Commun. 72: 347–354.PubMedCrossRefGoogle Scholar
  36. 36.
    Bast, R. E., Barfield, S. A., Gehrke, L., and Ilan, J., 1977, Proc. Natl. Acad. Sci. U.S.A. 74: 3133–3137.PubMedCrossRefGoogle Scholar
  37. 37.
    Tata, J. R., 1970, in: Biochemical Actions of Hormones (E. Litwak, ed.), pp. 89–133, Academic Press, New York.Google Scholar
  38. 38.
    Schjeide, O. A., 1970, in: Cell Differentiation (O. Schjeide and J. Devillis, eds.), pp. 447–475, Van Nostrand-Reinhold, New York.Google Scholar
  39. 39.
    Strome, S., and Young, E. T., 1980, J. Mol. Biol. 146: 433–450.CrossRefGoogle Scholar
  40. 40.
    Whelly, S. M., and Barker, K. L., 1982, J. Steroid Biochem. 16: 495–501.PubMedCrossRefGoogle Scholar
  41. 41.
    Chaney, W. G., and Morris, A. J., 1978, Arch. Biochem. Biophys. 191: 734–741.PubMedCrossRefGoogle Scholar
  42. 42.
    Kozak, M. K., 1980, Cell 19: 79–90.PubMedCrossRefGoogle Scholar
  43. 43.
    Varenne, S., Bue, J., Lloubes, R., and Lazdunski, C., 1984, J. Mol. Biol. 180: 549–576.PubMedCrossRefGoogle Scholar
  44. 44.
    Moldave, K., 1972, in: Frontiers of Biology: The Mechanism of Protein Synthesis and Its Regulation (L. Bosch, ed.), pp. 465–486, North-Holland, Amsterdam.Google Scholar
  45. 45.
    Skogerson, L., 1979, Methods Enzymol. 60: 676–685.PubMedCrossRefGoogle Scholar
  46. 46.
    Webster, G. C., and Webster, S. L., 1983, Mech. Ageing Dev. 22: 121–128.PubMedCrossRefGoogle Scholar
  47. 47.
    Pappenheimer, A. M., Jr., 1977, Annu. Rev. Biochem. 46: 69–94.PubMedCrossRefGoogle Scholar
  48. 48.
    Garel, J. P., 1974, J. Theor. Biol. 43: 211–225.PubMedCrossRefGoogle Scholar
  49. 49.
    Grosjean, H., and Fiers, W., 1982, Gene 18: 199–209.PubMedCrossRefGoogle Scholar
  50. 50.
    Mäenpää, P. H and Bernfield, M. R., 1975, Biochemistry 14: 4820–4826.PubMedCrossRefGoogle Scholar
  51. 51.
    Kanerva, P. A., and Mäenpää, P. H., 1978, Acta Chem. Scand. Ser. B. 32: 561–568.CrossRefGoogle Scholar
  52. 52.
    Bos, E. S., Vonk, R. J., Gruber, M., and AB, G.,1972, FEBS Lett. 24: 197–200.Google Scholar
  53. 53.
    Clemens, M. J., 1974, Prog. Biophys. Mol. Biol. 28: 69–108.PubMedCrossRefGoogle Scholar
  54. 54.
    Tata, J. R., 1973, in: Karolinska Symposium on Research Methods in Reproductive Endocrinology (E. Diczfalusy, ed.), pp. 192–224, Karolinska Institute.Google Scholar
  55. 55.
    Lippiello, P. M., Holloway, C. T., Garfield, S. A., and Holloway, P. W., 1979, J. Biol. Chem. 24: 2004–2009.Google Scholar
  56. 56.
    Talkad, V., Schneider, E., and Kennell, D., 1976, J. Mol. Biol. 104: 299–303.PubMedCrossRefGoogle Scholar
  57. 57.
    Mullinix, K. P., Myers, M. B., Cristmann, J. L., Deeley, R. G., Gordon, J. I., and Goldberger, R. F., 1979, J. Biol. Chem. 254: 9860–9866.PubMedGoogle Scholar
  58. 58.
    Lizardi, P., Mahdavi, V., Shields, D., and Candelas, G., 1979, Proc. Natl. Acad. Sci. U.S.A. 76: 6211–6215.PubMedCrossRefGoogle Scholar
  59. 59.
    Smith, R. L., Baca, O., and Gordon, J., 1976, J. Mol. Biol. 100: 115–126.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Lee Gehrke
    • 1
    • 2
  • Joseph Ilan
    • 3
  1. 1.Harvard-M.I.T. Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Anatomy and Cellular BiologyHarvard Medical SchoolBostonUSA
  3. 3.Department of Developmental Genetics and AnatomySchool of Medicine, Case Western Reserve UniversityClevelandUSA

Personalised recommendations