Skip to main content

Escherichia coli Threonyl-Transfer RNA Synthetase as a Model System to Study Translational Autoregulation in Prokaryotes

  • Chapter
Translational Regulation of Gene Expression

Abstract

For many years, it was believed that the regulation of gene expression in prokaryotes occurs only at the transcriptional level. However, many results in the last ten years demonstrate that the process of translation is an important step for the regulation of gene expression and can affect the termination of transcription through polarity or attenuation of transcription. The translation step itself can also be regulated. The first example of translational regulation was found in RNA phages 1 and is still being studied.2 Other examples of genes regulated at the translational level have been discovered, particularly in the case of genes that code for proteins that bind nucleic acids. Examples of these include gene 32 of phage T4,3 the ribosomal protein operons,4 the initiation factor 3 (IF3) gene,5 and the threonyl-transfer RNA (tRNA) synthetase reported herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lodish, H. F., Zinder, H. D., 1966, J. Mol. Biol. 19: 333–348.

    Article  PubMed  CAS  Google Scholar 

  2. Carey, J., Lowary, P. T., Uhlenbeck, O. C., 1983, Biochemistry 22: 4723–4730.

    Article  PubMed  CAS  Google Scholar 

  3. Von Hippel, P. H., Kowalczykowsky, S. C., Lomberg, N., Newport, J. W., Paul, L. S., Stormo, G. D., Gold, L., 1982, J. Mol. Biol. 162: 795–818.

    Article  Google Scholar 

  4. Nomura, M., Gourse, R., Baughman, G., 1984, Annu. Rev. Biochem. 53: 75–117.

    Article  PubMed  CAS  Google Scholar 

  5. Butler, J. S., Springer, M., Dondon, J., Graffe, M., Grunberg-Manago, M., 1986, J. Mol. Biol. 192: 767–780.

    Article  PubMed  CAS  Google Scholar 

  6. Baughman, G., Nomura, M., 1984, Proc. Natl. Acad. Sci. U.S.A. 81: 5389–5393.

    Article  PubMed  CAS  Google Scholar 

  7. Friesen, J. D., Tropack, M., An, G., 1983, Cell 32: 361–369.

    Article  PubMed  CAS  Google Scholar 

  8. Hennecke, H., Bock, A., Thomale, J., Nass, G., 1977, J. Bacteriol. 131: 949–950.

    Google Scholar 

  9. Plumbridge, J. A., Springer, M., Graffe, M., Goursot, R., Grunberg-Manago, M., 1980, Gene 11: 33–42.

    Article  PubMed  CAS  Google Scholar 

  10. Mayaux, J. F., Fayat, G., Fromant, M., Springer, M., Grunberg-Manago, M., Blanquet, S., 1983, Proc. Natl. Acad. Sci. U.S.A. 80: 6152–6156.

    Article  PubMed  CAS  Google Scholar 

  11. Fayat, G., Mayaux, J. F., Sacerdot, C., Fromant, M., Springer, M., Grunberg-Manago, M., Blanquet, S., 1983, J. Mol. Biol. 171: 239–261.

    Article  PubMed  CAS  Google Scholar 

  12. Archibold, E. R., Williams, L. S., 1972, J. Bacteriol. 109: 1020–1206.

    PubMed  CAS  Google Scholar 

  13. Neidhardt, F. C., Bloch, P. L., Pedersen, S., Reeh, S., 1977, J. Bacteriol. 129: 378–387.

    PubMed  CAS  Google Scholar 

  14. Plumbridge, J. A., Springer, M., 1982, J. Bacteriol. 152: 661–668.

    PubMed  CAS  Google Scholar 

  15. Lestienne, P., Plumbridge, J. A., Grunberg-Manago, M., Blanquet, S., 1984, J. Biol. Chem. 259: 5232–5237.

    PubMed  CAS  Google Scholar 

  16. Springer, M., Plumbridge, J. A., Butler, J. S., Graffe, M., Dondon, J., Mayaux, J. F., Fayat, G., Lestienne, P., Blanquet, S., Grunberg-Manago, M., 1985, J. Mol. Biol. 185: 93–104.

    Article  PubMed  CAS  Google Scholar 

  17. Butler, J. S., Springer, M., Dondon, J., Grunberg-Manago, M., 1986, J. Bacteriol. 165: 198–203.

    PubMed  CAS  Google Scholar 

  18. Springer, M., Graffe, M., Butler, J. S., Grunberg-Manago, M., 1986, Proc. Natl. Acad. Sci. U.S.A. 83: 4384–4388.

    Google Scholar 

  19. Kisselev, L. L., 1985, Prog. Nucleic Acids Res. Mol. Biol. 32: 237–266.

    Article  CAS  Google Scholar 

  20. Karam, J., Gold, L., Singer, B., Dawson, M., 1981, Proc. Natl. Acad. Sci. U.S.A. 78: 4669–4673.

    Article  PubMed  CAS  Google Scholar 

  21. Miller, J. H., 1972, in: Experiments in Molecular Genetics, pp. 352 - 355, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Springer, M., Grunberg-Manago, M. (1987). Escherichia coli Threonyl-Transfer RNA Synthetase as a Model System to Study Translational Autoregulation in Prokaryotes. In: Ilan, J. (eds) Translational Regulation of Gene Expression. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5365-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5365-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5367-6

  • Online ISBN: 978-1-4684-5365-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics