Posttranscriptional Processing (Splicing and 3’-End Formation) of Nuclear Messenger RNA Precursors in Vitro

  • Walter Keller
Part of the NATO ASI Series book series (NSSA, volume 136)


In eukaryotic cells the primary RNA transcripts of nuclear genes coding for proteins undergo a series of posttranscriptional modifications before they are transported to the cytoplasm where they function as messenger RNAs (mRNA). These processing reactions include the addition of a 7-methyl guanosine to the 5′ end (capping), the formation of the mature 3′ ends (usually accompanied by polyadenylation), and finally, the removal of introns by RNA splicing.


Splice Site Small Nuclear Ribonucleoprotein Histone mRNA Splice Reaction Splice Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Moss, B. (1983). 5′ terminal cap structures of eukaryotic and viral mRNAs. In: Processing of RNA, D. Apirion, ed. CRC Press Inc., Boca Raton, Florida.Google Scholar
  2. 2).
    Birnstiel, M.L., Busslinger, M., and Strub, K. (1985). Transcription termination and 3′ processing: the end is in site! Cell 41, 349–359.PubMedCrossRefGoogle Scholar
  3. 3).
    Leff, S.E., Rosenfeld, M.G. and Evans, R.M. (1986). Complex transcriptional units: diversity in gene expression by alternative RNA processing. Ann. Rev. Biochem. 56, 1091–1117.CrossRefGoogle Scholar
  4. 4).
    Green, M.R. (1986). Pre-mRNA splicing. Ann. Rev. Genet, (in press).Google Scholar
  5. 5).
    Padgett, R.A., Grabowski, P.J., Konarska, M.M., Seiler, S.R., and Sharp, P.A. (1986). Splicing of messenger RNA precursors. Ann. Rev. Biochem. 55, 1119–1150.PubMedCrossRefGoogle Scholar
  6. 6).
    Krainer, A.R., Maniatis, T., Ruskin, B. and Green, M.R. (1984). Normal and mutant human B-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 36, 993–1005.PubMedCrossRefGoogle Scholar
  7. 7).
    Dignam, J.D., Lebovitz, R.M. and Roeder R.G. (1983). Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucl. Acids Res. 11, 1475–1489.PubMedCrossRefGoogle Scholar
  8. 8).
    Hernandez, N. and Keller, W. (1983). Splicing of in vitro synthesized messenger RNA precursors in HeLa cell extracts. Cell 35, 89–99.PubMedCrossRefGoogle Scholar
  9. 9).
    Hardy, S.F., Grawboski, P.J., Padgett, R.A. and Sharp, P.A. (1984). Cofactor requirements for splicing of purified messenger RNA precursors. Nature (London) 308, 375–377.CrossRefGoogle Scholar
  10. 10).
    Keller, W. (1984). The RNA lariat: a new ring to the splicing of mRNA precursors. Cell 39, 423–425.PubMedCrossRefGoogle Scholar
  11. 11).
    Peebles, C.L., Perlman, P.S., Mecklenburg, K.L., Petrillo, M.L., Tabor, J.H., Jarell, K.A., and Cheng, H.L. (1986). A self-splicing RNA excises an intron lariat. Cell 44, 213–223.PubMedCrossRefGoogle Scholar
  12. 12).
    Van der Veen, R., Arnberg, A.C., van der Horst, G., Bonen, L., Tabak, H.F. and Grivell, L.A. (1986). Excised group II introns in yeast mitochondria are lariats and can be formed by self-splicing in vitro. Cell 44, 225–234.PubMedCrossRefGoogle Scholar
  13. 13).
    Cech, T.R. (1986). The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell 44, 207–210.PubMedCrossRefGoogle Scholar
  14. 14).
    Cech, T.R. and Bass, B.L. (1986). Biological catalysis by RNA. Ann. Rev. Biochem. 55, 599–629.PubMedCrossRefGoogle Scholar
  15. 15).
    Zaug, A.J., and Chech, T.R. (1986). The intervening sequence RNA of Tetrahymena is an enzyme. Science 231, 470–475.PubMedCrossRefGoogle Scholar
  16. 16).
    Waring, R.B., Scazzochio, C., Brown, T.A. and Davies, R.W. (1983). Close relationship between certain nuclear and mitochondrial introns. Implications for the mechanism of RNA splicing. J. Mol. Biol. 167, 595–605.PubMedCrossRefGoogle Scholar
  17. 17).
    Waring, R.B. and Davies, R.W. (1984). Assessment of a model for intron RNA secondary structure relevant to RNA self-splicing: a review. Gene 28, 277–291.PubMedCrossRefGoogle Scholar
  18. 18).
    Davies, R.W., Waring, R.B., Ray, J.A., Brown, T.A. and Scazzochio, C. (1982). Making ends meet: a model for RNA splicing in fungal mitochondria. Nature (London) 300, 719–724.CrossRefGoogle Scholar
  19. 19).
    Breathnach, R., and Chambon, P. (1981). Organization and expression of eucaryotic split genes coding for proteins. Ann. Rev. Biochem. 50, 349–383.PubMedCrossRefGoogle Scholar
  20. 20).
    Mount, S.M. (1982). A catalogue of splice junction sequences. Nucl. Acids Res. 10, 459–472.PubMedCrossRefGoogle Scholar
  21. 21).
    Busch, H., Reddy, R. Rohtblum, L. and Choi, Y.C. (1981). SsnRNAs, snRNPs, and RNA processing. Ann. Rev. Biochem. 51, 617–654.CrossRefGoogle Scholar
  22. 22).
    Grawboski, P.J., Seiler, S.R. and Sharp, P.A. (1985). A multi-component complex is involved in the splicing of messenger RNA precursors. Cell 42, 345–353.CrossRefGoogle Scholar
  23. 23).
    Frendewey, D. and Keller, W. (1985). Stepwise assembly of a pre-mRNA splicing complex requires U-snRNPs and specific intron sequences. Cell 42, 355–367.PubMedCrossRefGoogle Scholar
  24. 24).
    Brody, E. and Abelson, J. (1985). The “spliceosome”: yeast pre-messenger RNA associates with a 40S complex in a splicing-dependent reaction. Science 228, 963–966.PubMedCrossRefGoogle Scholar
  25. 25).
    Lerner, M.R., Boyle, J.A, Mount, S.M., Wolin, S.L. and Steitz, J.A. (1980). Are snRNPs involved in splicing? Nature (London) 283, 220–224.CrossRefGoogle Scholar
  26. 26).
    Rogers, J. and Wall, R. (1980). A mechanism for RNA splicing. Proc. Nat. Acad. Sci. USA 77, 1877–1879.PubMedCrossRefGoogle Scholar
  27. 27).
    Padgett, R.A., Mount, S.M., Steitz, J.A. and Sharp, P.A. (1983). Splicing of messenger RNA precursors is inhibited by antisera to small nuclear ribonucleoprotein. Cell 35, 101–107.PubMedCrossRefGoogle Scholar
  28. 28).
    Kramer, A., Keller, W., Appel, B. and Luhrmann, R. (1984). The 5′ terminus of the RNA moiety of U1 small nuclear rebonucleoprotein particles is required for the splicing of messenger RNA precursors. Cell 38, 299–307.PubMedCrossRefGoogle Scholar
  29. 29).
    Mount, S.M., Pettersson, I., Hinterberger, M., Karmas, A., and Steitz, J.A. (1983). The U1 small nuclear RNA-protein complex selectively binds a 5′ splice site in vitro. Cell 33, 509–518.PubMedCrossRefGoogle Scholar
  30. 30).
    Zhuang, Y. and Weiner, A.M. (1986). A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation. Cell 46, 827–835.PubMedCrossRefGoogle Scholar
  31. 31).
    Black, D.L., Chabot, B. and Steitz, J.A. (1985). U2 as well as Ul small nuclear ribonucleoproteins are involved in premessenger RNA splicing. 42, 737–750.Google Scholar
  32. 32).
    Krainer, A.R. and Maniatis, T. (1985). Multiple factors including the small nuclear ribonucleoproteins U1 and U2 are necessary for pre-mRNA splicing in vitro. Cell 42, 725–736.PubMedCrossRefGoogle Scholar
  33. 33).
    Black, D.L. and Steitz, J.A. (1986). Pre m-RNA splicing in vitro requires intact U4/U6 small nuclear ribonucleoproteins. Cell 46, 697–704.PubMedCrossRefGoogle Scholar
  34. 34).
    Berget, S.M. and Robberson, B.L. (1986). U1, U2 and U4/U6 small nuclear ribonucleoproteins are required for in vitro splicing but not polyadenylation. Cell 46, 691–696.PubMedCrossRefGoogle Scholar
  35. 35).
    Chabot, B., Black, D.L., LeMaster, D.M. and Steitz, J.A. (1985). The 3′ splice site of pre-messenger RNA is recognized by a small nuclear ribonucleoprotein. Science 230, 1344–1349.PubMedCrossRefGoogle Scholar
  36. 36).
    Keller, E.B. and Noon, W.A. (1984). Intron splicing: a conserved internal signal in introns of animal pre-mRNAs. Proc.Natl.Acad. Sci.USA 81, 7417–7420.PubMedCrossRefGoogle Scholar
  37. 37).
    Keller E.B. and Noon, W.A. (1985). Intron splicing: a conserved internal signal in introns of Drosophila pre-mRNAs. Nucl. Acids Res. 13, 4971–4981.PubMedCrossRefGoogle Scholar
  38. 38).
    Konarska, M.M. and Sharp, P.A. (1986). Electrophoretic separation of complexes involved in the splicing of precursors to mRNAs. Cell 46, 845–855.PubMedCrossRefGoogle Scholar
  39. 39).
    Choi, Y.D., Grabowski, P.J., Sharp, P.A. and Dreyfuss, G. (1986). Heterogeneous nuclear ribonucleoproteins: role in RNA splicing. Science 231, 1534–1539.PubMedCrossRefGoogle Scholar
  40. 40).
    Furneaux, H.M., Perkins, K.K., Freyer, G.A., Arenas, J. and Hurwitw, J. (1985). Isolation and characterization of two fractions from HeLa cells required for mRNA splicing in vitro. Proc. Nat. Acad. Sci. USA 82, 4351–4355.PubMedCrossRefGoogle Scholar
  41. 41).
    Kramer, A. and Keller, W. (1985). Purification of a protein required for the splicing of pre-mRNA and its separation from the lariat debranching enzyme. EMBO J. 4, 3571–3581.PubMedGoogle Scholar
  42. 42).
    Moore, C.L., and Sharp, P.A. (1985). Accurate cleavage and polyadenylation of exogenous RNA substrate. Cell 41, 845–855.PubMedCrossRefGoogle Scholar
  43. 43).
    Moore, C.L., Skolnik-David, H. and Sharp, P.A. (1986). Analysis of RNA cleavage at the adenovirus-2 L3 polyadenylation site. EMBO J. 5, 1929–1938.PubMedGoogle Scholar
  44. 44).
    Gick, O., Kramer, A., Keller, W. and Birnstiel, M.L. (1986). Generation of histone mRNA 3′ ends by endonucleolytic cleavage of the pre-mRNA in a snRNP-dependent in vitro reaction. EMBO J. 5, 1319–1326.PubMedGoogle Scholar
  45. 45).
    Galli, G., Hofstetter, H., Stunnenberg, H.G. and Birnstiel, M.L. (1983). Biochemical complementation with RNA in the Xenopus oocyte: a small RNA is required for the generation of 3′ histone mRNA termini. Cell 34, 823–828.PubMedCrossRefGoogle Scholar
  46. 46).
    Strub, K., Galli, G., Busslinger, M. and Birnstiel, M.L. (1984). The cDNA sequences of the sea urchin U7 small nuclear RNA suggest specific contacts between histone mRNA precursor and U7 RNA during RNA processing. EMBO J. 3, 2801–2807.PubMedGoogle Scholar
  47. 47).
    Strub, K., and Birnstiel, M.L. (1986). Genetic complementation in the Xenopus oocyte: Co-expression of sea urchin histone and U7 restores 3′ processing of H3 pre-mRNA in the oocyte. EMBO J. 5, 1675–1682.PubMedGoogle Scholar
  48. 48).
    Schaufele, F., Gilmartin, G.M., Bannwarth, W. and Birnstiel, M.L. (1986). Compensatory mutations suggests that base-pairing with a small nuclear RNA is required to form the 3′ end of H3 messenger RNA. Nature (London) 323, 777–781.CrossRefGoogle Scholar
  49. 49).
    Zarkower, D., Stephenson, P., Sheets, M. and Wickens, M. (1986). The AAUAA sequence is required both for cleavage and for polyadenylation of SV40 pre-mRNA in vitro. Mol. Cell. Biol. 6, 2317–2323.PubMedGoogle Scholar
  50. 50).
    Hashimoto, C. and Steitz, J.A. (1986). A small nuclear ribonucleoprotein associates with the AAUAAA polyadenylation signal in vitro. Cell 45, 581–591.PubMedCrossRefGoogle Scholar
  51. 51).
    Waring, R.B., Towner, P., Minier, S.J. and Davies, R.W. (1986). Splice-site selection by a self-splicing RNA of Tetrahymena. Nature (London) 321, 133–139.CrossRefGoogle Scholar
  52. 52).
    Revel, M., and Groner, Y. (1978). Posttranscriptional modifications of mRNAs and their role in translation. Ann. Rev. Biochem., 47, 1079–1126.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Walter Keller
    • 1
  1. 1.Division of Molecular BiologyGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations