Advertisement

Viral Particles at Atomic Resolution

  • Michael G. Rossmann
  • Edward Arnold
  • Greg Kamer
  • Marcia J. Kremer
  • Ming Luo
  • Thomas J. Smith
  • Gerrit Vriend
  • Roland R. Rueckert
  • Anne G. Mosser
  • Barbara Sherry
  • Ulrike Boege
  • Douglas G. Scraba
  • Mark A. McKinlay
  • Guy D. Diana
Part of the NATO ASI Series book series (NSSA, volume 136)

Abstract

Crick and Watson (ref. 1) first recognized that spherical viruses had to be regular polyhedra. Of these, the icosahedron has the largest number (60) of asymmetric units and was subsequently found to be the preferred envelope. The coding capacity of the enclosed genetic material could therefore be limited to coding only a relatively limited structural protein(s) for one-sixth of the virion shell. The assembly of viral particles from smaller, repeated subunit s presents several defined advantages: such strategy of replication reduces considerably the amount of genetic information needed to code for the structural protein(s), and minimizes the risks of incurring in fatal errors, as faulty subunits inaccurately synthesized can be discarded at assembly time. The entire replication cycle of a virus, therefore, can be visualized as a two-step process:
  1. a)

    the synthesis of viral components (nucleic acid and proteins), i.e: a template dependent, energy consuming process of polymerization of preformed blocks (nucleotides or amino acids), and

     
  2. b)

    the self-assembly of the subunits into more complex structures, a process that does not involve the formation of stable chemical bonds but brings the the subunits (or the intermediate structures) to a thermodynamically stable configuration.

     

Keywords

Atomic Resolution Human Rhinovirus Tomato Bushy Stunt Virus Energy Consuming Process Oxazoline Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Crick, F.H.C. and Watson, J.D., (1956), Nature (London), 177, 473–475.PubMedCrossRefGoogle Scholar
  2. 2).
    Caspar, D.L.D. & Klug, A. (1962), Cold Spring Harbor Symp. Quant. Biol. 27, 1–24.PubMedCrossRefGoogle Scholar
  3. 3).
    Rayment, I., Baker, T.S., Caspar, D.L.D. & Murakami, W.T. (1982), Nature (London), 295, 110–115.PubMedCrossRefGoogle Scholar
  4. 3a).
    Harrison, S.C., Olson, A.J., Schutt, C.E., Winkler, F.K. & Bricogne, G. (1978), Nature (London), 276, 368–373.PubMedCrossRefGoogle Scholar
  5. 5).
    Abad-Zapatero, C., Abdel-Meguid, S.S., Johnson, J.E., Leslie, A.G.W., Rayment, I., Rossmann, M.G., Suck, D. & Tsukihara, T. (1980), Nature (London), 286, 33–39.PubMedCrossRefGoogle Scholar
  6. 6).
    Liljas, L., Unge, T., Jones, T.A., Fridborg, K., Lovgren, S., Skoglund, U. & Strandberg, B. (1982), J. Mol. Biol. 159, 93–108.PubMedCrossRefGoogle Scholar
  7. 7).
    Rossmann, M.G. (1984), Virology, 134, 1–11.PubMedCrossRefGoogle Scholar
  8. 8).
    Rossmann, M.G., Arnold, E., Erickson, J.W., Frankenberger, E.A., Griffith, J.P., Hecht, H.J., Johnson, J.E., Kamer, G., Luo, M., Mosser, A.G., Rueckert, R.R., Sherry, B. & Vriend, G. (1985), Nature (London), 317, 145–153.PubMedCrossRefGoogle Scholar
  9. 9).
    Hogle, J.M., Chow, M. & Filman, D.J. (1985), Science, 229, 1358–1365.PubMedCrossRefGoogle Scholar
  10. 10).
    Luo, M., Boege, U., Vriend, G., Kamer, G., Minor, I., Arnold, E., Scraba, D.G. & Rossmann, M.G. (1986), manuscript in preparation.Google Scholar
  11. 11).
    Roberts, M.M., White, J.L., Gruetter, M.G. & Burnett, R.M. (1986, Science, 232, 1148–1151.PubMedCrossRefGoogle Scholar
  12. 12).
    Pfaff, E., Mussgay, M., Boehm, H.O., Schulz, G.E. & Schaller, H. (1982), EMBO J. 1, 869–874.PubMedGoogle Scholar
  13. 13).
    Palmenberg, A.C. (1986), unpublished results.Google Scholar
  14. 14).
    Rueckert, R.R. (1976). In: Comprehensive Virology, H. Fraenkel-Conrat & R.R. Wagner, eds., Vol. 6, pp. 131–213, Plenum Press, New YorkGoogle Scholar
  15. 15).
    Rao, S.T. & Rossmann, M.G. (1973), J. Mol. Biol. 76, 241–256.PubMedCrossRefGoogle Scholar
  16. 16).
    Rossmann, M.G. & Argos, P. (1976), J. Mol. Biol. 105, 75–96.PubMedCrossRefGoogle Scholar
  17. 17).
    Rossmann, M.G. & Palmenberg, A.C. (1986), unpublished results.Google Scholar
  18. 18).
    Icenogle, J., Shiwen, H., Duke, G., Gilbert, S., Rueckert, R. & Anderegg, J. (1983), Virology, 127, 412–425.PubMedCrossRefGoogle Scholar
  19. 19).
    Mandel, B. (1976), Virology, 69, 500–510.PubMedCrossRefGoogle Scholar
  20. 20).
    Emini, E.A., Jameson, B.A. & Wimmer, E. (1983a), Nature (London), 304, 699–703.PubMedCrossRefGoogle Scholar
  21. 21).
    Diamond, D.C., Jameson, B.A., Bonin, J., Kohara, M., Abe, S., Itoh, H., Komatsu, T., Arita, M., Kuge, S., Nomoto, A., Osterhaus, A.D. M.E., Crainic, R. & Wimmer, E. (1985), Science, 229, 1090–1093.PubMedCrossRefGoogle Scholar
  22. 22).
    Emini, E.A., Ostapchuk, P. & Wimmer, E. (1983b), J. Virol. 48, 547–550.PubMedGoogle Scholar
  23. 23).
    Sherry, B. & Rueckert, R.R. (1985), J. Virol. 53, 137–143.PubMedGoogle Scholar
  24. 24).
    Sherry, B., Mosser, A.G., Colonno, R.J., & Rueckert, R.R. (1986), J. Virol. 57, 246–257.PubMedGoogle Scholar
  25. 25).
    Caliguiri, L.A., McSharry, J.J. & Lawrence, G.W. (1980), Virology, 105, 86–93.PubMedCrossRefGoogle Scholar
  26. 26).
    McSharry, J.J., Caliguiri, L.A. & Effers, H.J. (1979), Virology, 97, 307–315.PubMedCrossRefGoogle Scholar
  27. 27).
    Diana, G.D., Salvador, U.H., Jonson, D., Henshaw, W.B., Lorenz, R.R., Thielking, W.H. & Pancic, F. (1977a), J. Med. Chem. 20, 750–756.PubMedCrossRefGoogle Scholar
  28. 28).
    Diana, G.D., Salvador, U.H., Zolay, E.S., Carabateas, P.M., Williams, G.L., Collins, J.C. & Pancic, F. (1977b), J. Med. Chem. 20, 757–761.PubMedCrossRefGoogle Scholar
  29. 29).
    McKinlay, M.A. & Steinberg, B.A. (1986), Antimicrobiol. Agents Chemother. 29, 30–32.Google Scholar
  30. 30).
    Otto, M.J., Fox, M.P., Fancher, M.J., Kuhrt, M.F., Diana, G. & McKinlay, M.A. (1985), Antimicrobiol. Agents Chemother. 27, 883–886.Google Scholar
  31. 31).
    Fox, M.P., Otto, M.J. & McKinlay, M.A. (1986), Antimicrobiol. Agents Chemother., manuscript submitted for publication.Google Scholar
  32. 32).
    Ninomiya, Y., Osborne, C., Aoyama, M., Umeda, I., Suhara, Y. & Ishitsuka, H. (1984), Virology, 134, 269–276.PubMedCrossRefGoogle Scholar
  33. 33).
    Lonberg-Holm, K., Gosser, L.B. & Kauer, J.C. (1975), J. Gen. Virol. 27, 329–342.PubMedCrossRefGoogle Scholar
  34. 34).
    Koch, F. & Koch, G. (1985). The Molecular Biology of Poliovirus, Springer-Verlag, New York.CrossRefGoogle Scholar
  35. 35).
    Fenwick, M.L. & Cooper, P.D. (1962), Virology, 18, 212–223.PubMedCrossRefGoogle Scholar
  36. 36).
    Smith, T.J., Kremer, M.J., Luo, M., Vriend, G., Arnold, E., Kamer, G. & Rossmann, M.G. (1986), Science, manuscript submitted for publication.Google Scholar
  37. 37).
    Adams, M.J., Buehner, M., Chandrasekhar, K., Ford, G.C., Hackert, M.L., Liljas, A., Rossmann, M.G., Smiley, I.E., Allison, W.S., Everse, J., Kaplan, N.O. & Taylor, S.S. (1973), Proc. Natl. Acad. Sci. U.S. 70, 1968–1972.CrossRefGoogle Scholar
  38. 38).
    Holbrook, J.J., Liljas, A., Steindel, S.J. & Rossmann, M.G. (1975). In: The Enzymes Boyer, P.D., ed., 3rd edn., Vol. XI, pp. 191–292. Academic Press, New York.Google Scholar
  39. 39).
    Rossmann, M.G., Abad-Zapatero, C., Hermodson, M.A. & Erickson, J.W. (1983), J. Mol. Biol. 166, 37–83.PubMedCrossRefGoogle Scholar
  40. 40).
    Rossmann, M.G. & Erickson, J.W. (1985). In: Virus Structure and Assembly, S. Casjens, ed., pp. 29–73, Jones & Bartlett, Boston.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Michael G. Rossmann
    • 1
  • Edward Arnold
    • 1
  • Greg Kamer
    • 1
  • Marcia J. Kremer
    • 1
  • Ming Luo
    • 1
  • Thomas J. Smith
    • 1
  • Gerrit Vriend
    • 1
  • Roland R. Rueckert
    • 2
  • Anne G. Mosser
    • 2
  • Barbara Sherry
    • 2
  • Ulrike Boege
    • 3
  • Douglas G. Scraba
    • 3
  • Mark A. McKinlay
    • 4
  • Guy D. Diana
    • 4
  1. 1.Department of Biological SciencesPurdue UniversityWest LafayetteUSA
  2. 2.Biophysics LaboratoryUniversity of WisconsinMadisonUSA
  3. 3.Department of BiochemistryUniversity of AlbertaEdmontonCanada
  4. 4.Microbiology and Medicinal Chemistry, Sterling-Winthrop Research InstituteColumbia TurnpikeRensselaerUSA

Personalised recommendations