Advertisement

The Molecular Biology of Paramyxoviruses

  • Daniel Kolakofsky
  • Laurent Roux
Part of the NATO ASI Series book series (NSSA, volume 136)

Abstract

The paramyxoviruses were originally classified together with the influenza viruses as myxoviruses because of their ability to attach to neuraminic acid containing receptors on erythrocytes (hemagglutination) and their ability to elute themselves due to a neuraminidase activity. The further findings that unlike influenza viruses, paramyxoviruses contain a non-segmented genome and that they replicate in the presence of actinomycin D, led to their reclassification as a separate family.

Keywords

Newcastle Disease Virus Tobacco Mosaic Virus Measle Virus Vesicular Stomatitis Virus Sendai Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Herrler, G., R. Rott and H.-D. Klenk. 1985. Neuraminic acid is involved in the binding of influenza C virus to erythrocytes. Virology 141, 144–147.PubMedCrossRefGoogle Scholar
  2. 2).
    Heggeness, M.H., A. Scheid and P.W. Choppin. 1980. Conformation of the helical nucleocapsids of paramyxoviruses and vesicular stomatitis virus: Reversible coiling and uncoiling induced by changes in salt concentration. Proc. Natl. Acad. Sci. USA 77, 2631–2635.PubMedCrossRefGoogle Scholar
  3. 3).
    Lynch, S. and D. Kolakofsky. 1978. Ends of the RNA within Sendai virus defective interfering nucleocapsids are not free. J. Virol. 28, 584–589.PubMedGoogle Scholar
  4. 4).
    Keene, J.D., B.J. Thornton and S.U. Emerson. 1981. Sequence-specific contacts between the RNA polymerase of vesicular stomatitis virus and the leader RNA gene. Proc. Natl. Acad. Sci. USA 78, 6191–6195.PubMedCrossRefGoogle Scholar
  5. 5).
    McSharry, J.J., R.W. Compans, H. Lackland and P.W. Choppin. 1975. Isolation and characterization of the nonglycosylated membrane protein and a nucleocapsid complex from the paramyxovirus SV5. Virology 67, 365–374.PubMedCrossRefGoogle Scholar
  6. 6).
    Bachi, T. 1980. Intramembrane structural differentiation in Sendai virus maturation. Virology 106, 41–49.PubMedCrossRefGoogle Scholar
  7. 7).
    Heggeness, M.H., P.R. Smith and P.W. Choppin. 1982. In vitro assembly of the nonglycosylated membrane protein (M) of Sendai virus. Proc. Natl. Acad. Sci. USA 79, 6232–6236.PubMedCrossRefGoogle Scholar
  8. 8).
    Buechi, M. and T. Bachi. 1982. Microscopy of internal structures of Sendai virus associated with the cytoplasmic surface of host membranes. Virology 120, 349–359.PubMedCrossRefGoogle Scholar
  9. 9).
    Blumberg, B.M., K. Rose, M.G. Simona, L. Roux, C. Giorgi and D. Kolakofsky. 1984. Analysis of the Sendai virus M gene and protein. J. Virol. 52, 656–663.PubMedGoogle Scholar
  10. 10).
    Giorgi, C., B.M. Blumberg and D. Kolakofsky. 1983. Sendai virus contains overlapping genes expressed from a single mRNA. Cell 35, 829–836.PubMedCrossRefGoogle Scholar
  11. 11).
    Bellini, W.J., G. Englund, S. Rozenblatt, H. Arnheiter and C.D. Richardson. 1985. Measles virus P gene codes for two proteins. J. Virol. 53, 908–919.PubMedGoogle Scholar
  12. 12).
    Barrett, T., S.B. Shrimpton and S.E.H. Russel. 1985. Nucleotide sequence of the entire protein coding region of canine distemper virus polymerase-associated (P) protein mRNA. Virus Research 3, 367–372.PubMedCrossRefGoogle Scholar
  13. 13).
    Spriggs, M.K. and P.L. Collins. 1986. Human parainfluenza virus type 3: Messenger RNAs, polypeptide coding assignments, intergenic sequences, and genetic map. J. Virol., in press.Google Scholar
  14. 14).
    Spriggs, M.K. and P.L. Collins. 1986. Sequence analysis of the P and C protein genes of human parainfluenza virus type 3: Patterns of amino acid homology among paramyx-oviral proteins. J. Gen. Virol., in press.Google Scholar
  15. 15).
    Curran, J.A., C. Richardson and D. Kolakofsky. 1986. Ribosomal initiation at alternate AUGs on the Sendai virus P/C mRNA. J. Virol. 57, 684–687.PubMedGoogle Scholar
  16. 16).
    Shioda, T., Y. Hydaka, T. Kanda, H. Shibuta, A. Nomoto and K. Iwasaki. 1983. Sequence of 3,687 nucleotides from the 3′ end of Sendai virus genome RNA and the predicted amino acid sequences of viral NP, P and C proteins. Nucleic Acids Res. 11, 7317–7330.PubMedCrossRefGoogle Scholar
  17. 17).
    Shioda, T., K. Iwasaki and H. Shibuta. 1986. Determination of the complete nucleotide sequence of the Sendai virus genome RNA and the predicted amino acid sequences of the F, HN and L proteins. Nucleic Acids Res. 14, 1545–1563.PubMedCrossRefGoogle Scholar
  18. 18).
    Morgan, E.M., G.G. Re and D.W. Kingsbury. 1984. Complete sequence of the Sendai virus NP gene from a cloned insert. Virology 135, 279–287.PubMedCrossRefGoogle Scholar
  19. 19).
    Blumberg, B.M., C. Giorgi, K. Rose and D. Kolakofsky. 1985. Sequence determination of the Sendai virus fusion protein gene. J. Gen. Virol. 66, 317–331.PubMedCrossRefGoogle Scholar
  20. 20).
    Blumberg, B., C. Giorgi, L. Roux, R. Raju, P. Dowling, A. Chollet and D. Kolakofsky. 1985. Sequence determination of the Sendai virus HN gene and its comparison to the influenza virus glycoproteins. Cell 41, 269–278.PubMedCrossRefGoogle Scholar
  21. 21).
    Morgan, E.M. and K.M. Rakestraw. 1986. Sequence of the Sendai virus L gene: Open reading frames upstream of the main coding region suggest that the gene may be polycistronic. Virology, in press.Google Scholar
  22. 22).
    Richardson, C.D., A. Berkovich, S. Rozenblatt and W.J. Bellini. 1985. Use of antibodies directed against synthetic peptides for identifying cDNA clones, establishing reading frames, and deducing the gene order of measles virus. J. Virol. 54, 186–193.PubMedGoogle Scholar
  23. 23).
    Hiebert, S.W., R.G. Paterson and R.A. Lamb. 1985. Identification and predicted sequence of a previously unrecognized small hydrophobic protein, SH, of the paramyxovirus simian virus 5. J. Virol. 55, 744–751.PubMedGoogle Scholar
  24. 24).
    Paterson, R.G., T.J.R. Harris and R.A. Lamb. 1984. Fusion protein of the paramyxovirus simian virus 5: Nucleotide sequence of mRNA predicts a highly hydrophobic glycoprotein. Proc. Natl. Acad. Sci. USA 81, 6706–6710.PubMedCrossRefGoogle Scholar
  25. 25).
    Collins, P.L., L.E. Dickens, A. Buckler-White, R.A. Olmsted, M.K. Spriggs, E. Camargo and K.V.W. Coelingh. 1986. Nucleotide sequences for the gene junctions of human respiratory syncytial virus reveal distinctive features of intergenic structure and gene order. Proc. Natl. Acad. Sci. USA. 83, 4594–4598.PubMedCrossRefGoogle Scholar
  26. 26).
    Collins, P.L. and G.W. Wertz. 1983. cDNA cloning and transcriptional mapping of nine polyadenylated RNAs encoded by the genome of human respiratory syncytial virus. Proc. Natl. Acad. Sci. USA 80, 3208–3212.PubMedCrossRefGoogle Scholar
  27. 27).
    Collins, P.L., Y.T. Huang and G.W. Wertz. 1984. Identification of a tenth mRNA of respiratory syncytial virus and assignment of polypeptides to the 10 viral genes. J. Virol. 49, 572–578.PubMedGoogle Scholar
  28. 28).
    Hsu, M.-C., A. Scheid and P.W. Choppin. 1979. Reconstitution of membranes with individual paramyxovirus glycoproteins and phospholipid in cholate solution. Virology 95,476–491.PubMedCrossRefGoogle Scholar
  29. 29).
    Choppin, P.W. and Compans, R.W. 1975. Reproduction of paramyxoviruses. In: Comprehensive Virology, 4, pp. 95–178. Ed. byFrankel-Conrat and Wagner. Plenum Press, NY.CrossRefGoogle Scholar
  30. 30).
    Homma, M. and M. Ohuchi. 1973. Trypsin action on the growth of Sendai virus in tissue culture cells. III. Structural difference of Sendai viruses grown in eggs and tissue culture cells. J. Virol. 12, 1457–1465.PubMedGoogle Scholar
  31. 31).
    Scheid, A. and P.W. Choppin. 1974. Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology 57, 475–490.PubMedCrossRefGoogle Scholar
  32. 32).
    Scheid, A. and P.W. Choppin. 1976. Protease activation mutants of Sendai virus: activation of biological properties by specific proteases. Virology 69, 265–277.PubMedCrossRefGoogle Scholar
  33. 33).
    Fan, D.P. and B.M. Sefton. 1978. The entry into host cells of Sindbis virus, vesicular stomatitis virus and Sendai virus. Cell 15, 985–992.PubMedCrossRefGoogle Scholar
  34. 34).
    Hsu, M.-C., A. Scheid and P.W. Choppin. 1981. Activation of the Sendai virus fusion protein (F) involves a conformational change with exposure of a new hydrophobic region. J. Biol. Chem. 256, 3557–3563.PubMedGoogle Scholar
  35. 35).
    Chambers, P., N.S. Millar and P.T. Emerson. 1986. Nucleotide sequence of the gene encoding the fusion glycoprotein of Newcastle disease virus. J. Gen. Virol., in press.Google Scholar
  36. 36).
    Mottet, G., A. Portner and L. Roux. 1986. Drastic immunoreactivity changes between the immature and mature forms of the Sendai virus HN and Fo glycoproteins. J. Virol. 59, 132–141.PubMedGoogle Scholar
  37. 37).
    Glazier, K., R. Raghow and D.W. Kingsbury. 1977. Regulation of Sendai virus transcription: Evidence for a single promoter in vivo. J. Virol. 21, 863–871.PubMedGoogle Scholar
  38. 38).
    Collins, P.L., L.E. Hightower and L.A. Ball. 1980. Transcriptional map for Newcastle disease virus. J. Virol. 35, 682–693.PubMedGoogle Scholar
  39. 39).
    Gupta, K.C. and D.W. Kingsbury. 1984. Complete sequences of the intergenic and mRNA start signals in the Sendai virus genome: Homologies with the genome of vesicular stomatitis virus. Nucleic Acids Res. 12, 3829–3841.PubMedCrossRefGoogle Scholar
  40. 40).
    Wilde, A. and T. Morrison. 1984. Structural and functional characterization of Newcastle disease virus polycistronic RNA species. J. Virol. 51, 71–76.PubMedGoogle Scholar
  41. 41).
    Gupta, K.C. and D.W. Kingsbury. 1985. Polytranscripts of Sendai virus do not contain intervening poly adenylate sequences. Virology 141, 102–109.PubMedCrossRefGoogle Scholar
  42. 42).
    Kolakofsky, D. and B.M. Blumberg. 1982. A model for the control of non-segmented negative strand virus genome replication. In: Virus Persistence, B.W.J. Mahy, A.C. Minson, and G.K. Darby, eds, Cambridge University Press, pp. 203–213.Google Scholar
  43. 43).
    Holland, J., K. Spindler, F. Horodyski, E. Grabau, S. Nichol and S. VandePol. 1982. Rapid evolution of RNA genomes. Science 215, 1577–1585.PubMedCrossRefGoogle Scholar
  44. 44).
    Portner, A., R.G. Webster and W.J. Bean. 1980. Similar frequencies of antigenic variants in Sendai, vesicular stomatitis, and influenza A viruses. Virology 104, 235–238.PubMedCrossRefGoogle Scholar
  45. 45).
    Leppert, M., L. Kort and D. Kolakofsky. 1977. Further characterization of Sendai virus DI-RNAs: A model for their generation. Cell 12, 539–552.PubMedCrossRefGoogle Scholar
  46. 46).
    Holland, J., Kennedy, S.I.T., Semler, B.L., Jones, CL., Roux, L. and Grabau E. 1980. Defective interfering RNA viruses and the host cell response. In: Comprehensive Virology, 16, Fraenkel-Conrat and Wagner eds., Plenum Press, New York & London, pp. 137–192CrossRefGoogle Scholar
  47. 47).
    Kolakofsky, D. Isolation and characterization of Sendai virus DI-RNAs. 1976. Cell 8, 547–555.PubMedCrossRefGoogle Scholar
  48. 48).
    Roux, L. and Holland, J.J. 1979. Role of defective interfering particles of Sendai virus in persistent infections. Virology 93, 91–103.PubMedCrossRefGoogle Scholar
  49. 49).
    Roux, L. and Waldvogel, F. 1981. Establishment of Sendai virus persistent infection: biochemical analysis of the early phase of a standard plus defective interfering virus infection of BHK cells. Virology 112, 400–410.PubMedCrossRefGoogle Scholar
  50. 50).
    Roux, L. and Waldvogel, F. 1983. Defective interfering particles of Sendai virus modulate HN expression at the surface of infected BHK cells. Virology 130, 91–104.PubMedCrossRefGoogle Scholar
  51. 51).
    Roux, L., Beffy, P. and Portner, A. 1984. Restriction of cell surface expression of Sendai virus hemagglutinin-neuraminidase glycoprotein correlates with its higher instability in persistently and standard plus defective interfering virus infected BHK-21 cells. Virology 138, 118–128.PubMedCrossRefGoogle Scholar
  52. 52).
    Roux, L., Beffy, P. and Portner, A. 1985. Three variations in the cell surface expression of the haemagglutinin-neuraminidase glycoprotein of Sendai virus. J. Gen. Virol. 66, 987–1000.PubMedCrossRefGoogle Scholar
  53. 53).
    Tuffereau, C., Portner, A. and Roux, L. 1985. The role of haemagglutinin-neuraminidase glycoprotein cell surface expression in the survival of Sendai virus-infected BHK-21 cells. J. Gen. Virol. 66, 2313–2318.PubMedCrossRefGoogle Scholar
  54. 54).
    Kolakofsky, D. and Bruschi, A. 1975. Antigenomes in Sendai virions and Sendai virus-infected cells. Virology 66, 185–191.PubMedCrossRefGoogle Scholar
  55. 55).
    Dayhoff, M. 1978. Atlas of protein sequence and structure. Vol. 5, Suppl. 3. National Biomedical Research Foundation, Washington, D.C.Google Scholar
  56. 56).
    Barker, W.C. and M.D. Dayhoff. 1982. Viral src gene products are related to the catalytic chains of mammalian cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 79, 2836–2839.PubMedCrossRefGoogle Scholar
  57. 57).
    Kolakofsky, D., J. Curran, B.M. Blumberg, C. Giorgi, R.A. Lamb, R.G. Paterson, S.W. Hiebert, S. Venkatesan and N. Elango. 1986. Sequence comparison of paramyxovirus surface glycoproteins. In: The Biology of Negative Strand RNA Viruses, B.W.J. Mahy & D. Kolakofsky, eds., Elsevier.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Daniel Kolakofsky
    • 1
  • Laurent Roux
    • 1
  1. 1.Department of MicrobiologyUniversity of Geneva Medical SchoolGenevaSwitzerland

Personalised recommendations