Application of in Vivo Electrochemistry to Cholecystokinin-Dopamine Interactions in the Ventral Striatum

  • Charles D. Blaha
  • Ross F. Lane
  • Anthony G. Phillips
Part of the Advances in Behavioral Biology book series (ABBI, volume 32)


In vivo electrochemistry (also referred to as in vivo voltammetry) is a relatively new technique that shows great promise for the direct measurement of several easily oxidized compounds in the brains of anesthetized and freely moving animals (for review, see ref. 1). This technique is being developed to provide information concerning the presence and concentrations of these compounds in the brain extracellular fluid and, perhaps more importantly, to measure dynamic changes in the concentration of these compounds, with particular emphasis on the monoamine neurotransmitters dopamine (DA), norepinephrine (NE) and serotonin (5-HT) and their metabolites. The catecholamines, DA and NE, and their metabolites, as well as 5-HT and its metabolites, are readily oxidized. Thus, the technique at present is primarily applicable to catecholaminergic and serotoninergic transmitter systems. Of particular interest is the monitoring of changes in the release of the neurotransmitter DA, because of its extensive interactions with other neurotransmitter or neuromodulatory systems and its proposed involvement in the behavioral pathology of a large number of neurological and psychiatric disorders. Thus, the electrochemical technique is particularly significant because it is the only method to make use of an on-line sensor that provides direct, continuous readout of released DA following typical stimulations and pharmacological manipulations of neural pathways without the necessity for perfusion or radioactive labelling, and with minimal perturbation to the brain cell microenvironment.


Nucleus Accumbens Dopamine Release Ventral Striatum Cell Firing Depolarization Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. N. Adams and C. A. Marsden, Electrochemical detection methods for monoamine measurements in vitro and in vivo, in: “Handbook of Psychopharmacology,” Vol. 15, L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds., Plenum Press, New York (1982).Google Scholar
  2. 2.
    R. F. Lane, A. T. Hubbard, and C. D. Blaha, Application of semidifferential electroanalysis to studies of neurotransmitters in the central nervous system, J. Electroanal. Chem. 95:117 (1979).CrossRefGoogle Scholar
  3. 3.
    A. G. Ewing, R. M. Wightman, and M. A. Dayton, In vivo voltammetry with electrodes that discriminate between dopamine and ascorbate, Brain Res. 249:361 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    P. T. Kissinger, J. B. Hart, and R. N. Adams, Voltammetry in brain tissue: a new neurophysiological measurement, Brain Res. 55:209 (1973).PubMedCrossRefGoogle Scholar
  5. 5.
    R. F. Lane, A. T. Hubbard, K. Fukunaga, and R. J. Blanchard, Brain catecholamines: detection in vivo by means of differential pulse voltammetry at surface-modified platinum electrodes, Brain Res. 114:346 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    L. Heimer and G. van Hoesen, The ventral striatum, in: “The Neostriatum,” I. Divac and R. G. E. Oberg, eds., Pergamon, London (1979).Google Scholar
  7. 7.
    R. F. Lane, A. T. Hubbard, and C. D. Blaha, Brain dopaminergic neurons: in vivo electrochemical information concerning storage, metabolism and release processes, Bioelectrochem. Bioenergetics. 5:504 (1978).CrossRefGoogle Scholar
  8. 8.
    J. O. Schenk, E. Miller, M. Rice, and R. N. Adams, Chronoamperometry in brain slices: quantitative evaluation of in vivo electrochemistry, Brain Res. 277:1 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    T. Sharp, N. T. Maidment, M. P. Brazell, T. Zetterstrom, U. Ungerstedt, G. W. Bennett, and C. A. Marsden, Changes in monoamine metabolites measured by simultaneous in vivo differential pulse voltammetry and intracerebral dialysis, Neuroscience 4:1213 (1984).CrossRefGoogle Scholar
  10. 10.
    T. Zetterstrom, T. Sharp, C. A. Marsden, and U. Ungerstedt, In vivo measurement of dopamine and its metabolites by intracerebral dialysis: changes after d-amphetamine, J. Neurochem. 41:1769 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    C. D. Blaha and R. F. Lane, Direct in vivo electrochemical monitoring of dopamine release in response to neuroleptic drugs, Europ. J. Pharmacol. 98:113 (1984).CrossRefGoogle Scholar
  12. 12.
    J. A. Clemens and L. A. Phebus, Changes in brain chemistry produced by dopaminergic agents: in vivo electrochemical monitoring reveals opposite changes in anesthetized vs unanesthetized rats, Brain Res. 267:183 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    J. A. Clemens and L.A. Phebus, Brain dialysis in conscious rats confirms in vivo electrochemical evidence that dopaminergic stimulation releases ascorbate, Life Sci. 35:671 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    F. Gonon, M. Buda, R. Cespuglio, J. Jouvet and J. F. Pujol, Voltammetry in the striatum of chronic freely moving rats: detection of catechols and ascorbic acid, Brain Res. 223:69 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    R. F. Lane and C. D. Blaha, Electrochemistry in vivo: application to CNS pharmacology, Ann. N.Y. Acad. Sci. 473:50 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    C. D. Blaha and R. F. Lane, Chemically modified electrode for in vivo monitoring of brain catecholamines, Brain Res. Bull. 10:861 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    R. F. Lane, C. Blaha, and S. Hari, Electrochemistry in vivo: monitoring dopamine release in the brain of the conscious, freely moving rat, Brain Res. Bull. in press (1987).Google Scholar
  18. 18.
    R. F. Lane and A. T. Hubbard, Electrochemistry of chemisorbed molecules. II. The influence of charged chemisorbed molecules on the electrode reactions of platinum complexes, J. Physical Chem. 77:1411 (1973).CrossRefGoogle Scholar
  19. 19.
    R. F. Lane, C. D. Blaha, and A. G. Phillips, In vivo electrochemical analysis of cholecystokinin-induced inhibition of dopamine release in the nucleus accumbens, Brain Res. 397:200 (1986).PubMedCrossRefGoogle Scholar
  20. 20.
    R. F. Lane and C. D. Blaha, Chronic haloperidol decreases dopamine release in striatum and nucleus accumbens in vivo: depolarization block as a possible mechanism of action, Brain Res. Bull. 18:135 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    A. G. Phillips, R. F. Lane, and C. D. Blaha, Inhibition of dopamine release by cholecystokinin: relevance to schizophrenia, Trends in Pharmacol. Sci. 7:126 (1986).CrossRefGoogle Scholar
  22. 22.
    J. R. Walters, R. H. Roth, and G. Aghajanian, Dopaminergic neurons: similar biochemical and histochemical effects of gamma-hydroxybutyrate and acute lesions of the nigro-striatal pathway, J. Pharmacol. Exp. Ther. 186:630 (1973).PubMedGoogle Scholar
  23. 23.
    R. Y. Wang and F. J. White, Effects of dopamine agonists on midbrain dopamine cell activity. in: “Catecholamines: Neuropharmacology and Central Nervous System — Theoretical Aspects,” E. Usdin, A. Carlsson, A. Dahlstrom and J. Engel, eds., Alan R. Liss, Inc., New York (1984).Google Scholar
  24. 24.
    S. Howard-Butcher, C. D. Blaha, and R. F. Lane, Differential effects of xylamine on extracellular concentrations of norepinephrine and dopamine in rat central nervous system: an in vivo electrochemical study, J. Pharmcol. Exp. Ther. 233:58 (1985).Google Scholar
  25. 25.
    C. D. Blaha and R. F. Lane, Chronic treatment with classical and atypical antipsychotic drugs differentially decreases dopamine release in striatum and nucleus accumbens in vivo, Neurosci. Lett. in press (1987).Google Scholar
  26. 26.
    P. A. Broderick, C. D. Blaha, and R. F. Lane, In vivo electrochemical evidence for an enkephalinergic modulation underlying stereotyped behavior: reversibility by naloxone, Brain Res. 269:378 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    S. Howard-Butcher, C. D. Blaha, and R. F. Lane, A comparison of CNS stimulants with phencyclidine on dopamine release using in vivo voltarametry, Brain Res. Bull. 13:497 (1984).PubMedCrossRefGoogle Scholar
  28. 28.
    R. F. Lane and C. D. Blaha, Acute thioridazine stimulates mesolimbic but not nigrostriatal dopamine release: demonstration by in vivo electrochemistry, Brain Res. 408:317 (1987).PubMedCrossRefGoogle Scholar
  29. 29.
    R. D. O’Neill, M. Fillenz, L. Sundstrom, and J. N. P. Rawlins, Voltammetrically monitored brain ascorbate as an index of excitatory amino acid release in the unrestrained rat, Neurosci. Lett. 52:227 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    T. Hokfelt, L. Skirboll, J. F. Rehfeld, M. Goldstein, K. Markey, and O. Dann, A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: evidence from immunohistochemistry combined with retrograde tracing, Neuroscience 5:2093 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    L. R. Skirboll, A. A. Grace, D. W. Hommer, J. Rehfeld, M. Goldstein, T. Hokfelt, and B. S. Bunney, Peptide-monoamine coexistence: studies of the actions of cholecystokinin-like peptides on the electrical activity of midbrain dopamine neurons, Neuroscience 6:2111 (1981).PubMedCrossRefGoogle Scholar
  32. 32.
    L. Zaborszky, G. F. Alheid, M. C. Beinfeld, L. E. Eiden, L. Heimer, and M. Palkovits, Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study, Neuroscience 14:427 (1985).PubMedCrossRefGoogle Scholar
  33. 33.
    N. P. V. Nair, S. Lal, and D. M. Bloom, Cholecystokinin and schizophrenia, in: “Psychiatric Disorders: Neurotransmitters and Neuropeptides,” J. M. Van Ree and S. Matthysee, eds. Elsevier, New York (1986).Google Scholar
  34. 34.
    P. W. Kalivas, Interactions between neuropeptides and dopamine neurons in the ventromedial mesencephalon, Neurosci. & Biobehav. Rev. 9:573 (1985).CrossRefGoogle Scholar
  35. 35.
    B. S. Bunney, L. A. Chiodo, and A. S. Freeman, Further studies on the specificity of proglumide as a selective cholecystokinin antagonist in the central nervous system, Ann. N.Y. Acad. Sci. 448:345 (1985).PubMedCrossRefGoogle Scholar
  36. 36.
    A. A. Grace and B. S. Bunney, Induction of depolarization block in midbrain dopamine neurons by repeated administration of haloperidol: analysis using in vivo intracellular recording, J. Pharmacol. Exp. Ther. 238:1092 (1986).PubMedGoogle Scholar
  37. 37.
    L. A. Chiodo and B. S. Bunney, Proglumide: selective antagonism of excitatory effects of cholecystokinin in the central nervous system, Science 219:144 (1983).CrossRefGoogle Scholar
  38. 38.
    G. Katsuura, S. Hsiao, and S. Itoh, Blocking of cholecystokinin octapeptide behavioral effects by proglumide, Peptides 5:529 (1984).PubMedCrossRefGoogle Scholar
  39. 39.
    J. N. Crawley, S. E. Hayes, T. L. O’Donohue, S. M. Paul, and F. K. Goodwin, Neuropeptide modulation of social and exploratory behaviors in laboratory rodents, Peptides 2:123 (1981).PubMedCrossRefGoogle Scholar
  40. 40.
    G. Katsuura, S. Itoh, and S. Hsiao, Specificity of nucleus accumbens activities related to cholecystokinin in rats, Peptides 6:91 (1985).PubMedCrossRefGoogle Scholar
  41. 41.
    S. L. Cohen, M. Knight, C. A. Tamminga, and T. N. Chase, Cholecystokinin effects on conditioned avoidance behavior, stereotypy and catalepsy, Eur. J. Pharmacol. 83:213 (1982).PubMedCrossRefGoogle Scholar
  42. 42.
    S. L. Cohen, M. Knight, C. A. Tamminga, and T. N. Chase, Tolerance to the anti-avoidance properties of cholecystokinin-octapeptide, Peptides 4:67 (1983).PubMedCrossRefGoogle Scholar
  43. 43.
    L. H. Schneider, J. E. Alpert, and S. D. Iversen, CCK-8 modulation of mesolimbic dopamine: antagonism of amphetamine stimulated behaviors, Peptides 4:749 (1983).PubMedCrossRefGoogle Scholar
  44. 44.
    G. Katsuura, S. Itoh, and J. F. Rehfeld, Effects of cholecystokinin on apomorphine-induced changes of motility in rats, Neuropharmacol. 23:731 (1984).CrossRefGoogle Scholar
  45. 45.
    J. M. van Ree, O. Gaffori, and D. de Wied, In rats, the behavioral profile of CCK-8 related peptides resembles that of antipsychotic agents, Eur. J. Pharmacol. 3:63 (1983).Google Scholar
  46. 46.
    F. J. Vaccarino and G. F. Koob, Microinjections of nanogram amounts of sulfated cholecystokinin octapeptide into the rat nucleus accumbens attenuates brain stimulation reward, Neurosci. Lett. 52:61 (1984).PubMedCrossRefGoogle Scholar
  47. 47.
    R. D. Mashal, F. Owen, J. F. W. Deakin, and M. Poulter, The effects of cholecystokinin on dopaminergic mechanisms in rat striatum, Brain Res. 277:375 (1983).PubMedCrossRefGoogle Scholar
  48. 48.
    K. Fuxe, K. Andersson, V. Locatelli, L. F. Agnati, T. Hokfelt, L. Skirboll, and V. Mutt, Cholecystokinin peptides produce marked reduction of dopamine turnover in discrete areas in the rat brain following intraventricular injection, Eur. J. Pharmacol. 67:325 (1980).CrossRefGoogle Scholar
  49. 49.
    L. F. Agnati and K. Fuxe, Subcortical limbic 3H-N-propylnorapomorphine binding sites are markedly modulated by cholecystokinin-8 in vitro, Biosci. Rep. 3:1105 (1983)CrossRefGoogle Scholar
  50. 50.
    G. Lucignani, L. J. Porrino, and C. A. Tamminga, Effects of systemically administered cholecystokinin-octapeptide on local cerebral metabolism, Eur. J. Pharmacol. 101:147 (1984).PubMedCrossRefGoogle Scholar
  51. 51.
    R. Markstein and T. Hokfelt, Effects of cholecystokinin-octapeptide on dopamine release from slices of cat caudate nucleus, J. Neurosci. 4:570 (1984).PubMedGoogle Scholar
  52. 52.
    M. Hamilton, M. J. Sheehan, J. de Belleroche, and L. J. Herberg, The cholecystokinin analogue, caerulein, does not modulate dopamine release or dopamine-induced locomotor activity in the nucleus accumbens, Neurosci. Lett. 44:77 (1984).PubMedCrossRefGoogle Scholar
  53. 53.
    M. M, Voigt, R. Y. Wang, and T. C. Westfall, The effects of cholecystokinin on the in vivo release of newly synthesized [3H]dopamine from the nucleus accumbens of the rat, J. Neurosci. 5:2744 (1985).PubMedGoogle Scholar
  54. 54.
    M. M. Voigt and R. Y. Wang, In vivo release of dopamine in the nucleus accumbens of the rat: modulation by cholecystokinin, Brain Res. 296:18 (1984).CrossRefGoogle Scholar
  55. 55.
    R. F. Lane, C. D. Blaha, and A. G. Phillips, Cholecystokinin-induced inhibition of dopamine neurotransmission: comparison with chronic haloperidol treatment, Prog. Neuropsychopharmacol. & Biol. Psychiat. in press (1986).Google Scholar
  56. 56.
    C. D. Blaha, A. G. Phillips, and R. F. Lane, Reversal by cholecystokinin of apomorphine-induced inhibition of dopamine release in the nucleus accumbens of the rat, Regulat. Peptides in press (1986).Google Scholar
  57. 57.
    F. J. White and R. Y. Wang, Interactions of cholecystokinin octapeptide and dopamine on nucleus accumbens neurons, Brain Res. 300:161 (1984).PubMedCrossRefGoogle Scholar
  58. J. J. Stern, C. A. Cudillo, and J. Kruper, Ventromedial hypothalamus and short-term suppression by caerulein in male rats, J. Comp. Physiol. Psychol. 90:484 (1976).Google Scholar
  59. 59.
    A. J. Kastin, C. Nissen, A. V. Schally, and D. H. Coy, Additional evidence that small amounts of a peptide can cross the blood-brain barrier, Pharmacol. Biochem. Behav. 11:717 (1979).PubMedCrossRefGoogle Scholar
  60. 60.
    D. W. Hommer, M. Palkovits, J. N. Crawley, S. M. Paul, and L.R. Skirboll, Cholecystokinin-induced excitation in the substantia nigra: evidence for peripheral and central components, J. Neurosci. 5:1387 (1985).PubMedGoogle Scholar
  61. 61.
    A. A. Grace and B.S. Bunney, Low doses of apomorphine elicit two opposing influences on dopamine cell electrophysiology, Brain Res. 333:285 (1985).PubMedCrossRefGoogle Scholar
  62. 62.
    R. Y. Wang and X.-T. Hu, Does cholecystokinin potentiate dopamine action in the nucleus accumbens?, Brain Res. 380:363–367 (1986).PubMedCrossRefGoogle Scholar
  63. 63.
    D. W. Hommer and L. R. Skirboll, Cholecystokinin-like peptides potentiate apomorphine-induced inhibition of dopamine neurons, Eur. J. Pharmacol. 91:151 (1983).PubMedCrossRefGoogle Scholar
  64. 64.
    D. W. Hommer, G. Stoner, J. N. Crawley, S. M. Paul, and L. R. Skirboll, Cholecystokinin-dopamine coexistence: electrophysiological actions corresponding to cholecystokinin receptor subtype, J. Neurosci. 6:3039 (1986).PubMedGoogle Scholar
  65. 65.
    J. N. Crawley, J. A. Stivers, L. K. Blurastein, S. M. Paul, Cholecystokinin potentiates dopamine-mediated behaviors: evidence for modulation specifiic to a site of co-existence, J. Neurosci. 5:1972 (1985).PubMedGoogle Scholar
  66. 66.
    B. S. Bunney and A. A. Grace, Acute and chronic haloperidol treatments: comparison of effects of chronic administration on nigral dopaminergic activity, Life Sci. 23:1715 (1978).PubMedCrossRefGoogle Scholar
  67. 67.
    L. A. Chiodo and B. S. Bunney, Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons, J. Neurosci. 8:1607 (1983).Google Scholar
  68. 68.
    F. J. White and R. Y. Wang, Comparison of the effects of chronic haloperidol treatment on A9 and A10 dopamine neurons in the rat, Life Sci. 32:983 (1983).PubMedCrossRefGoogle Scholar
  69. 69.
    F. J. White and R. Y. Wang, Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons, Science 221:1054 (1983).PubMedCrossRefGoogle Scholar
  70. 70.
    M. M. Voigt, R. Y. Wang, and T. C. Westfall, Cholecystokinin octapeptides alter the release of endogenous dopamine from the rat nucleus accumbens in vitro., J. Pharmacol. Exp. Ther. 237:147 (1986).PubMedGoogle Scholar
  71. 71.
    A. J. Kastin, J. E. Zadina, W. A. Banks, and M. V. Graf, Misleading concepts in the field of brain peptides, Peptides Suppl. 1, 5:249 (1984).PubMedCrossRefGoogle Scholar
  72. 72.
    W. A. Banks and A. J. Kastin, Permeability of the blood-brain barrier to neuropeptides: the case for penetration, Psychoneuroendocrinol. 10:385 (1985).CrossRefGoogle Scholar
  73. 73.
    E. Passaro, H. Debas, W. Oldendorf, and T. Yamada, Rapid appearance of intraventricularly administered neuropeptides in the peripheral circulation, Brain Res. 241:338 (1982).CrossRefGoogle Scholar
  74. 74.
    X.-G. Zhu, G. H. Greeley, Jr., B. G. Lewis, P. Lilja, and J. C. Thompson, Blood-CSF barrier to CCK and effect of centrally administered bombesin on release of brain CCK, J. Neurosci. Res. 15:393 (1986).PubMedCrossRefGoogle Scholar
  75. 75.
    M. C. Beinfeld and M. Palkovits, Distribution of cholecystokinin (CCK) in the hypothalamus and limbic system of the rat, Neuropeptides 2:123 (1981).CrossRefGoogle Scholar
  76. 76.
    A. M. Thierry, J. P. Tassin, G. Blanc, and J. Glowinski, Selective activation of the mesocortical DA system by stress, Nature 263:242 (1976).PubMedCrossRefGoogle Scholar
  77. 77.
    F. Fadda, A. Argiolas, M. R. Melis, H. H. Tissari, P. L. Onali, and G. L. Gessa, Stress-induced increase in 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the cerebral cortex and nucleus accumbens: reversal by diazepam, Life Sci. 23:2219 (1978).PubMedCrossRefGoogle Scholar
  78. 78.
    G. P. Smith, D. Greenberg, J. D. Falasco, J. Gibbs, R. A. Liddle, and J. A. Williams, Plasma levels of cholecystokinin produced by satiating doses of exogenous CCK-8, Soc. Neurosci. Abstr. 11:557 (1985).Google Scholar
  79. 79.
    G. Katsuura and S. Itoh, Sedative action of cholecystokinin octapeptide on behavioral excitation by thyrotropin releasing hormone and methamphetamine in the rat, Jap. J. Physiol. 32:83 (1982).CrossRefGoogle Scholar
  80. 80.
    R. J. Baldessarini, “Chemotherapy in Psychiatry: Principles and Practices,” 2nd. edn., Harvard Univ. Press, Cambridge (1985).Google Scholar
  81. 81.
    R. Y. Wang, F. J. White, and M. M. Voigt, Cholecystokinin, dopamine and schizophrenia, Trends in Pharmacol. Sci. 5:436 (1984).CrossRefGoogle Scholar
  82. 82.
    J. A. Mattes, W. Hom, J. M. Rockford, M. Orlosky, Ceruletide for schizophrenia: a double-blind study, Biol. Psychiat. 20:533 (1985).PubMedCrossRefGoogle Scholar
  83. 83.
    P. Frey, Cholecystokinin octapeptide levels in rat brain are changed after subchronic neuroleptic treatment, Eur. J. Pharmacol. 95:87 (1983).PubMedCrossRefGoogle Scholar
  84. 84.
    I. N. Ferrier, G. W. Roberts, T. J. Crow, E. C. Johnstone, D. G. C. Owens, Y. C. Lee, and D. O’Shaughnessy, Reduced cholecystokininlike and somatostatin-like immunoreactivity in limbic lobe is associated with negative symptoms in schizophrenia, Life Sci. 33:475 (1983).PubMedCrossRefGoogle Scholar
  85. 85.
    P. M. P. Verbank, F. Lotstra, C. Gilles, P. Linkowski, J. Mendelwicz, and J. J. Vanderhaeghen, Reduced cholecystokinin immunoreactivity in the cerebrospinal fluid of patients with psychiatric disorders, Life Sci. 34:67 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Charles D. Blaha
    • 1
    • 3
  • Ross F. Lane
    • 2
    • 3
  • Anthony G. Phillips
    • 1
  1. 1.Departments of PsychologyUniversity of British ColumbiaVancouverCanada
  2. 2.Departments of ChemistryUniversity of British ColumbiaVancouverCanada
  3. 3.Departments of PsychiatryUniversity of British ColumbiaVancouverCanada

Personalised recommendations