Advertisement

Far-Field Somatosensory Evoked Potentials in Huntington’s Disease

  • J. Noth
  • K. Podoll
  • R. Töpper
Part of the Advances in Behavioral Biology book series (ABBI, volume 32)

Abstract

The sophisticated motor control of primates depends on the continuous integration of new sensory information into the ongoing motor program. The motor deficits resulting from a deafferentation in patients with severe peripheral sensory neuropathy have recently been summarized by Marsden et al. (1984). In these patients, fine manipulatory movements made with the hands and maintenance of a constant force in the absence of visual control were most strikingly affected. This inability to maintain a constant level of muscular contraction may underly the development of pseudo-dystonic movements in deafferented patients.

Keywords

Median Nerve Somatosensory Evoke Potential Scalp Recording Ventrobasal Complex Deafferented Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bollen, E. L., Arts, R. J., Roos, R. A., Van der Velde, E. A. and Buruma, O. J., 1985, Somatosensory evoked potentials in Huntington’s chorea, Electroenceph. Clin. Neurophysiol., 62:235–240.PubMedCrossRefGoogle Scholar
  2. Cowan, J. M. A., Rothwell, J. C., Wise, R. J. S., Marsden, C. D., 1986, Electrophysiological and positron emission studies in a patient with cortical myoclonus, epilepsia partialis continua and motor epilepsy, J. Neurol. Neurosurg. Psychiat., 49:796–807.PubMedCrossRefGoogle Scholar
  3. Deiber, M. P., Giard, M. H. and Mauguière, F., 1986, Separate generators with distinct orientations for N20 and P22 somatosensory evoked potentials to finger stimulation? Electroenceph. Clin. Neurophysiol., 65:321–334.PubMedCrossRefGoogle Scholar
  4. Desmedt, J. E. and Bourguet, M., 1985, Color imaging of parietal and frontal somatosensory potential fields evoked by stimulation of median or posterior tibial nerve in man, Electroenceph. Clin. Neurophysiol., 62:1–17.PubMedGoogle Scholar
  5. Dom, R., Malfroid, M. and Baro, F., 1976, Neuropathology of Huntington’s chorea. Studies of the ventrobasal complex of the thalamus, Neurology, 25:64–68Google Scholar
  6. Ehle, A. L., Stewart, R. M., Lellelid, N. A. and Leventhal, N. A., 1984, Evoked potentials in Huntington’s disease. A comparative and longitudinal study, Arch. Neurol., 41:379–382.PubMedCrossRefGoogle Scholar
  7. Hayden, M. R., 1981, “Huntington’s Chorea,” Springer, Berlin.CrossRefGoogle Scholar
  8. Marsden,D. D., Rothwell, J. C. and Day, B. L., 1984, The use of peripheral feedback in the control of movement, TINS, 7:253–257.Google Scholar
  9. Martin, J. B. and Gusella, J. F., 1986, Huntington’s disease. Pathogenesis and management, N. Eng. J. Med., 315:1267–1276.CrossRefGoogle Scholar
  10. Lange, H. W., 1981, Quantitative changes of telencephalon, diencephalon and mesencephalon in Huntington’s chorea, postencephalitic, and idiopathic Parkinsonism, Verh. Anat. Ges., 75:923–925.Google Scholar
  11. Lange, H. W. and Aulich, A., 1986, Die Hirnatrophie bei der Huntingtonschen Krankheit. Neuroanatomische und neuroradiologische Untersuchungen, in: “Die Huntingtonsche Krankheit,” H. Oepen, ed., Hippokrates, Stuttgart, 25–41.Google Scholar
  12. Mauguière, F.,Desmedt, J. E.. Courjon, J., 1983, Neural generations of N18 and P14 far field somatosensory evoked potentials/patients with lesions of thalamus or thalamo-cortical radiations, Electroenceph. Clin. Neurophysiol., 56:283–292.PubMedCrossRefGoogle Scholar
  13. Nakanishi,T., Shimada, Y., Sakuta, M., Toyokura, Y., 1978, The initial positive component of scalp-recorded somatosensory evoked potentials in normal stubjects and in patients with neurological disorders, Electroenceph. Clin. Neurophysiol., 45:26–34.PubMedCrossRefGoogle Scholar
  14. Noth, J., Engel, L., Friedemann, H.-H. and Lange, H. W., 1984a, Evoked potentials in patients with Huntington’s disease and their offspring. I. Somatosensory evoked potentials. Electroenceph. Clin. Neurophysiol., 59:134–141.PubMedCrossRefGoogle Scholar
  15. Noth, J., Friedemann, H.-H. and Podoll, K., 1984b, Long latency reflexes in patients with basal ganglia disorders, in: “The Basal Ganglia,” J. S. McKenzie, R. E. Kemm and L. N. Wilcock, eds., Plenum Publishing Corporation, 343–353.Google Scholar
  16. Noth, J., Podoll, K. and Friedemann, H.-H., 1985, Long-loop reflexes in small hand muscles studied in normal subjects and in patients with Huntington’s disease, Brain, 108:65–80.PubMedCrossRefGoogle Scholar
  17. Oepen, G., Doerr, M. and Thoden, U., 1981, Visual (VEP) and somatosensory (SSEP) evoked potentials in Huntington’s chorea, Electroenceph. Clin. Neurophysiol., 51:666– 670.PubMedCrossRefGoogle Scholar
  18. Phillips, C. G. and Porter, R., 1977, Corticospinal Neurones: Their role in movement, Monographs of the Physiological Society Nr. 34, Academic Press, London.Google Scholar
  19. Suzuki, I. and Mayanagi, Y., 1984, Intracranial recording of short latency somatosensory evoked potentials in man: identification of origin of each component, Electroenceph. Clin. Neurophysiol., 59:286–296.PubMedCrossRefGoogle Scholar
  20. Takahashi, K., Okada, E. and Fujitani, Y., 1972, Somatosensory and visual evoked potentials in Huntington’s chorea, Clin. Neurol. (Tokyo). 12:381– 385.Google Scholar
  21. Wiesendanger, M. and Miles, T. S., 1982, Ascending pathway of low-threshold muscle afferents to the cerebral cortex and its possible role in motor control, Physiol. Rev., 62:1234–1270.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. Noth
    • 1
  • K. Podoll
    • 1
  • R. Töpper
    • 1
  1. 1.Neurologische Klinik mit klinischer Neurophysiologie Alfried Krupp KrankenhausEssenGermany

Personalised recommendations