Advertisement

Regression of Striatal Dendrites in Parkinson’s Disease

  • Thomas H. McNeill
  • Sally A. Brown
  • Ira Shoulson
  • Lowell W. Lapham
  • Thomas A. Eskin
  • Jose A. Rafols
Conference paper
Part of the Advances in Behavioral Biology book series (ABBI, volume 32)

Abstract

The clinical aspects of Parkinson’s disease (PD) were first characterized by James Parkinson in 1817 in his monograph “An Essay on Shaking Palsy”. He described the features of the illness as a proneness to tremor with a progressive decline in motor function marked by bradykinesia, rigidity and postural instability (Birkmayer and Riederer, 1983; Klawans and Tanner, 1984). The onset of the illness usually occurs in the sixth or seventh decade and thus, has been considered a disease of aging. Approximately 2 percent of the population over the age of 60 is afflicted with PD and prevalence is predicted to increase with prolonged longevity (Calne, 1970; Marttila, 1983). Neuropathological hallmarks include a loss of dopaminergic neurons in the pars compacta of the substantia nigra (SN) accompanied by a significant decline in the content of dopamine and activity of the synthetic enzyme, tyrosine hydroxylase (Hornykiewicz, 1982; Marsden, 1981). Less pronounced changes involve other neurotransmitter systems including a decline in choline acetyltransferase and glutamic acid decarboxylase activity in the striatum and norepinephrine and dopamine beta hydroxylase activity in the locus coeruleus (Hornykiewicz, 1982). Earlier studies have also reported cortical atrophy associated with an increase in the number of astrocytes, particularly in the frontal cortex, as well as general “senile changes” such as cortical cell loss, neurofibrillary degeneration and senile plaque formations (Turner, 1968).

Keywords

Substantia Nigra Dendritic Arbor Dendritic Segment Total Dendritic Length Normal Aged Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronin, N., DiFiglia, M., Graveland, G.A., Schwartz, W.J., and Wu, J.Y., 1984, Localization of immunoreactive enkephalins in GABA synthesizing neurons of the rat caudate nucleus, Brain Res., 300:376.PubMedCrossRefGoogle Scholar
  2. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., and Seitelberger, F., 1973, Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J. Neurol. Sci., 20:415.PubMedCrossRefGoogle Scholar
  3. Birkmayer, W., and Riederer, P., 1983, “Parkinson’s Disease”, Springer-Verlag, Austria.Google Scholar
  4. Buell, S.J., and Coleman, P.D., 1979, Dendritic growth in the aged human brain and failure of growth in senile dementia, Science, 206:854.PubMedCrossRefGoogle Scholar
  5. Buell, S.J., and Coleman, P.D. 1981, Quantitative evidence for selective dendritic growth in normal human aging but not in senile dementia. Brain Res., 214:23.PubMedCrossRefGoogle Scholar
  6. Calne, D.B., 1970, “Parkinsonism: Physiology, Pharmacology and Treatment”, Edward Arnold Ltd., London.Google Scholar
  7. Chang, H.T., and Kitai, S.T., 1982, Large neostriatal neurons in the rat: An electron microscope study of gold-toned, Golgi-stained cells, Brain Res. Bull., 8:631.PubMedCrossRefGoogle Scholar
  8. Coleman, P.D., and Riesen, A.E., 1968, Environmental effects on cortical dendritic fields. I. Rearing in the dark, J. Anat., 102(3):363.PubMedGoogle Scholar
  9. Dimova, R., Vuillet, J., and Seite, R., 1980, Study of the rat neostriatum using a combined Golgi-electron microscope technique and serial sections, Neurosci., 5:1581.CrossRefGoogle Scholar
  10. Forno, L.S., and Norville, R.L., 1979, Ultrastructure of neostriatum in Huntington’s and Parkinson’s disease, Adv. Neurol., 23:123Google Scholar
  11. Fox, C.A., Andrade, A.N., Hillman, D.E., and Schwin, R.C., 1971, The spiny neurons in the primate striatum: A Golgi and electron microscopic study, J. Hirnforsch, 13:181.PubMedGoogle Scholar
  12. Freund, T.F., Powell, J.F., and Smith, A.D., 1984, Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines, Neurosci., 13(4):1189.CrossRefGoogle Scholar
  13. Graybiel, A.M., and Ragsdale, C.W., 1983, Biochemical anatomy of the striatum, in: “Chemical Neuroanatomy”, P.C. Emson, ed., Raven Press, New York.Google Scholar
  14. Groves, P.M., 1980, Synaptic endings and their postsynaptic targets in neostriatum: Synaptic specializations revealed from analysis of serial sections, Proc. Nat’l. Acad. Sci. U.S.A. 77:6926.CrossRefGoogle Scholar
  15. Hassler, R., 1938, Zur pathologie der paralysis agitans und des postenzephalitischen Parkinsonismus, J. Psychol. Neurol., 48:387.Google Scholar
  16. Hornykiewicz, O., 1982, Brain neurotransmitter changes in Parkinson’s disease, in: “ Movement Disorders”, C.D. Marsden and S. Fahn, eds., Butterworth Scientific, London.Google Scholar
  17. Jacob, H., 1978, Neuropathologie des Parkinson-Syndroms und die seneszenz des gehirns, in: “Langzeitbehandlung des Parkinson-Syndroms”, P.-A. Fischer, ed., K. Schattauer, Stuttgart-New York.Google Scholar
  18. Jones, W. H., and Thomas, D.B., 1962, Changes in the dendritic organization of neurons in the cerebral cortex following deafferentation, J. Anat. Lond., 96(3) :375.Google Scholar
  19. Kalil, K., 1978, Patch-like termination of thalamic fibers in the putamen of the Rhesus monkey: An autoradiographic study, Brain Res., 140:333.PubMedCrossRefGoogle Scholar
  20. Kemp, J.M., and Powell, T.P.S., 1970, The cortico-striate projection in the monkey, Brain 93:525.PubMedCrossRefGoogle Scholar
  21. Kemp, J.M., and Powell, T.P.S., 1971, The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: A study with the Golgi method, Phil. Trans. R. Soc. Lond. B., 262:429.CrossRefGoogle Scholar
  22. Kemp, J.M., and Powell, T.P.S., 1971, The structure of the caudate nucleus of the cat: Light and electron microscopy. Phil. Trans. R. Soc. Ser. B., 262:383.CrossRefGoogle Scholar
  23. Kemp, J.M., and Powell, T.P.S., 1971, The site of termination of afferent fibers in the caudate nucleus, Phil. Trans. R. Soc. Lond. B., 262:413.CrossRefGoogle Scholar
  24. Kish, S.J., Rajput, A., Gilbert, J., Rozdilsky, B., Chang, L-J., Shannk, K. and Hornykiewicz, O., 1986, Eleyated y-aminobutyric acid level in striatal but not extrastriatal brain regions in Parkinson’s disease: correlation with striatal dopamine loss, Ann. Neurol., 20:26.PubMedCrossRefGoogle Scholar
  25. Klawans, H.L., and Tanner, C.M., 1984, Movement disorders in the elderly, in: “Clinical Neurology of Aging”, M.L. Albert, ed., Oxford University Press, Oxford.Google Scholar
  26. Lehmann, J., and Langer, S.Z., 1983, The striatal cholinergic interneuron: Synaptic target of dopaminergic terminalis? Neurosci., 10(4):1105.CrossRefGoogle Scholar
  27. Lloyd, K.G., and O. Hornykiewicz, 1973, L-glutamic acid decarboxylase in Parkinson’s disease: effect of L-dopa therapy, Nature, 243:521.PubMedCrossRefGoogle Scholar
  28. Lloyd, K.G., and Davidson, L., 1979, Involvement of GABA neurons and receptors in Parkinson’s disease and Huntington’s chorea: a compensatory mechanism?, in: “Advances in Neurology”, P.C. Emson, ed., Raven Press, New York.Google Scholar
  29. Marsden, C.D., 1981, Extrapyramidal diseases, in: “The Molecular Basis of Neuropathology”, A.N. Davison and R.H.S. Thompson, eds., Edward Arnold, London.Google Scholar
  30. Marsden, C.D., 1982, Neurotransmitters and CNS Disease. Basal Ganglia and Aging, The Lancet V. II, 8380:1141.Google Scholar
  31. Marttila, R.J., 1983, Diagnosis and epidemiology of Parkinson’s disease, Acta Neurol. Scand., 95:9.CrossRefGoogle Scholar
  32. McGeer, P.L., and McGeer, E.G., 1976, Enzymes associated with the metabolism of catecholamines, acetylcholine and GABA in human controls and patients with Parkinson’s disease and Huntington’s chorea, J. Neurochem., 26:65.PubMedGoogle Scholar
  33. Montfort, J.C., Javoy-Agid, F., Hauw, J.J., Dobois, B. and Agid, Y., 1985, Brain glutamate decarboxylase in Parkinson’s disease with particular reference to a premortem severity index, Brain 108:301.CrossRefGoogle Scholar
  34. Moyer, A., V. Moyer, and Coleman, P.D., 1985, An inexpensive PC based system for quantification of neuronal processes, Soc. Neurosci., 11:261.18.Google Scholar
  35. Parkinson, J., 1817, “Essay on the Shaking Palsy”, Neely and Jones, eds., Sherwood, London.Google Scholar
  36. Powell, T.P.S., and Cowan, W.M., 1956, A study of thalamo-striate relations in the monkey, Brain, 79:364.PubMedCrossRefGoogle Scholar
  37. Rafols, J.A., and Fox, C.A., 1979, Fine structure of the primate striatum, Appl. Neurophysiol, 42:13.PubMedGoogle Scholar
  38. Rajput, A.H., Offord, K.P., Beard C.M., and Kurland, L.T., 1984, Epidemiology of Parkinsonism: incidence, classification, and mortality, Ann. Neurol., 16(3):278.PubMedCrossRefGoogle Scholar
  39. Reisine, T.D., Fields, J.Z., and Yamamura, H.I., 1977, Neurotransmitter receptor alterations in Parkinson’s disease, Life Sci., 21:335.PubMedCrossRefGoogle Scholar
  40. Rinne, U.K., 1982, Brain neurotransmitter receptors in Parkinson’s disease, in: “Movement Disorders”, C.D. Marsden and S. Fahn, eds., Butterworth Scientific, London.Google Scholar
  41. Rogers, J., Zornetzer, S.F., Bloom, F.E., and Mervis, R.E., 1984, Senescent microstructural changes in rat cerebellum, Brain Res., 292:23.PubMedCrossRefGoogle Scholar
  42. Schade, J.P., and Baxter, C.F., 1960, Changes during growth in the volume and surface area of cortical neurons in the rabbit. Exper. Neurol., 2:158.CrossRefGoogle Scholar
  43. Schneider, E., Fischer, P.-A., Jacobi, P., and Becker, H., 1978, Zur Relevanz extranigraler Hirnlasionen bei Parkinson-Kranken, in: “Langzeitbehandlung des Parkinson-Syndroms”, P.-A. Fischer, ed., F.K. Schattauer, Stuttgart-New York.Google Scholar
  44. Standler, N.A., and Bernstein, J.J., 1982, Degeneration and regeneration of motoneuron dendrites after ventral root crush:computer reconstruction of dendritic fields, Exper. Neurol., 75:600.CrossRefGoogle Scholar
  45. Tretiakoff, C., 1919, Contribution a l’etude de l’anatomie pathologique du locus niger de Sommering avec quelques deductions relatives a la pathogenie des troubles du tonus mulculaire et de la maladie de Parkinson, These med., no 293, Paris.Google Scholar
  46. Trugman, J.M., Geary II, W.A., and Wooten, G.F., 1986. Localization of D-2 dopamine receptors to intrinsic striatal neurones by quantitative autoradiography, Nature, 323:267.PubMedCrossRefGoogle Scholar
  47. Turner, B., 1968, Pathology of paralysis agitans, in: Diseases of the Basal Ganglia”, P.J. Vinken and G.W. Bruyn, eds., North-Holland Publishing Co., Amsterdam.Google Scholar
  48. Van der Loos, H., 1956, Une combinaison de deux vieilles methodes histologiques pour le systeme nerveux centra, Mschr. Psychiat. Neurol., 132:330.CrossRefGoogle Scholar
  49. Wilson, C.J., and P.M. Groves, P.M., 1980, Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: A study employing intracellular injection of horseradish peroxidase, J. Comp. Neurol., 194:599.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Thomas H. McNeill
    • 1
    • 2
  • Sally A. Brown
    • 1
    • 2
  • Ira Shoulson
    • 1
    • 2
  • Lowell W. Lapham
    • 1
    • 2
  • Thomas A. Eskin
    • 1
    • 2
  • Jose A. Rafols
    • 1
    • 2
  1. 1.University of RochesterRochesterUSA
  2. 2.Wayne State UniversityDetroitUSA

Personalised recommendations