Advertisement

Integration of Motor Functions in the Basal Ganglia

  • Patrick L. McGeer
  • Edith G. McGeer
Part of the Advances in Behavioral Biology book series (ABBI, volume 32)

Abstract

The basal ganglia are a group of subcortical nuclei that govern the extrapyramidal motor system. Unfortunately, no agreed upon definition exists as to what constitutes either the basal ganglia or the extrapyramidal motor system. Although much precise anatomical detail is available, difficulty arises in integrating this information with physiological function. Despite an immense amount of elegant research spanning many decades, it is still not known exactly what basal ganglia structures do, either individually or as a group.

Keywords

Basal Ganglion Firing Rate Globus Pallidus Supplementary Motor Area Subthalamic Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, G.I., and Tsukahara, N., 1974, Cerebrocerebellar communication systems. Physiol. Rev., 54:957PubMedGoogle Scholar
  2. Aronin, N., Difiglia, M., Graveland, G.A., Schwartz, W.J., and Wu, J.-Y., 1984, Localization of immunoreactive enkephalin in GABA synthesizing neurons of the rat neostriatum, Brain Res., 300:376PubMedCrossRefGoogle Scholar
  3. Bakay, R.A.E., Fiandaca, M.S., Barrow, D.L., Schiff, A., and Collins, D.C., 1985, Preliminary report on the use of fetal tissue transplantation to correct MPTP-induced parkinson-like syndrome in primates, Appl. Neurophysiol., 48:358PubMedGoogle Scholar
  4. Beal, M.F., Chattha, G.K., and Martin, J.B., 1986, A comparison of regional somatostatin and neuropeptide Y distribution in rat striatum and brain, Brain Res., 377:240PubMedCrossRefGoogle Scholar
  5. Besson, M.-J., Graybiel, A.M., and Quinn, B., 1986, Coexistence of dynorphin B-like and substance P-like immunoreactivity in striatal neurons in the cat. Soc. Neurosci. Abst., 12:876Google Scholar
  6. Bjorklund, A., and Stenevi, U., 1979, Reconstruction of brain circuitries by neural transplants, TINS., 301Google Scholar
  7. Burton, K., Farrell, K., Li, D., and Calne, D.B., 1984, Lesions of the putamen and dystonia: CT and magnetic resonance imaging, Neurology, 34:962PubMedGoogle Scholar
  8. Carpenter, M.B., and Sutin, J., 1983, Human Neuroanatomy, 8th ed., Williams and Wilkins, BaltimoreGoogle Scholar
  9. Cheramy, A., Leviel, V., and Glowinski, J., 1981, Dendritic release of dopamine in the substantia nigra, Nature, 289:537PubMedCrossRefGoogle Scholar
  10. Eccles, J.C., Ito, M., and Szentagothai, J., 1967, The Cerebellum as a Neuronal Machine, Springer-Verlag, Heidelberg.Google Scholar
  11. Graybiel, A.M., 1983, Compartmental organization of the mammalian striatum, Progr. Brain Res., 58:247CrossRefGoogle Scholar
  12. Graybiel, A.M., 1986, Neuropeptides in the basal ganglia. Res. Publ. Assoc. Res. Nerv. Ment. Dis., 64:135PubMedGoogle Scholar
  13. Kamo, H., Kim, S.U., McGeer, P.L., and Shin, D.H., 1986, Functional recovery in a rat model of Parkinson’s disease following transplantation of cultured human sympathetic neurons, Brain Res., 397:372PubMedCrossRefGoogle Scholar
  14. Kitai, S.T., and Kita, H., 1986, Anatomy and physiology of the basal ganglia, Proc. IUPS, 16:516Google Scholar
  15. Kristeva, R., Keller, E., Deeke, L., and Kornhuber, H.H., 1979, Cerebral potentials preceding unilateral and simultaneous bilateral finger movements, Electroencephalogr. Clin. Neurophysiol., 47:229PubMedCrossRefGoogle Scholar
  16. Marchand, R., and Poirier, L.J., 1983, Isthmic origin of neurons of the rat substantia nigra, Neuroscience, 9:373PubMedCrossRefGoogle Scholar
  17. Markstein, R., and Hokfelt, T., 1984, Effect of cholecystokinin-octapeptide on dopamine release from slices of cat caudate nucleus, J. Neurosci., 4:570PubMedGoogle Scholar
  18. McGeer, P.L., Boulding, J.C., Gibson, W.C., and Foulkes, R.G., 1961, Druginduced extrapyramidal reactions, JAMA., 177:665PubMedCrossRefGoogle Scholar
  19. McGeer, E.G., Staines, W.A., and McGeer, P.L., 1983, Neurotransmitters in the basal ganglia, Can. J. Neurol. Sci., 11:89Google Scholar
  20. McGeer, P.L., Eccles, J.C., and McGeer, E.G., 1987, Molecular Biology of the Mammalian Brain, 2nd ed., Plenum Press, New York.CrossRefGoogle Scholar
  21. Oertel, W.H., Riethmuller, G., Mugnaini, E., Schmechel, D.E., Weindl, A., Gramsh, C., and Herz, A., 1983, Opioid peptide-like immunoreactivity localized in gabaergic neurons of rat neostriatum and central amygdaloid nucleus, Life Sci., 33(Suppl. I):73PubMedCrossRefGoogle Scholar
  22. Olson, L., Backlund, E.-O., Freed, W., Herrera-Maraschitz, M., Hoffer, B., Seiger, A., and Stromberg, I., 1985, Transplantation of monoamine-producing cell systemsin oculo and intracranially: experiments in search of a treatment for Parkinson’s disease, Ann. N.Y. Acad. Sci., 457:105PubMedCrossRefGoogle Scholar
  23. Penny, G.R., Afsharpour, S., and Kitai, S.T., 1986, The glutamate decarboxylase-, leucine enkephalin-, methionine enkephalin- and substance P-immunoreactive neurons in the neostriatum of the rat and cat: evidence for partial population overlap. Neuroscience, 17:1011PubMedCrossRefGoogle Scholar
  24. Schultz, W., 1986, Activity of pars reticulata neurons of monkey substantia nigra in relation to motor, sensory, and complex events, J. Neurophysiol., 55:660PubMedGoogle Scholar
  25. Schultz, W., Ruffieux, A., and Aebischer, P., 1983, The activity of pars compacta neurons of the monkey substantia nigra in relation to motor activation, Exp. Brain Res., 51:377CrossRefGoogle Scholar
  26. Smith, Y., and Parent, A., 1986, Neuropeptide Y-immunoreactive neurons in the striatum of cat and monkey: morphological characteristics, intrinsic organization and co-localization with somatostatin, Brain Res., 372:241PubMedCrossRefGoogle Scholar
  27. Sugimoto, T., and Mizuno, N., 1986, Immunohistochemical demonstration of neurotensin in striatal neurons of the cat, with particular reference to coexistence with enkephalin, Brain Res., 398:195PubMedCrossRefGoogle Scholar
  28. Vincent, S.R., and Johansson, O., 1983, Striatal neurons containing both somatostatin and avian pancreative polypeptide (APP)-like immunoreactivities and NADPH-diaphorase activity: a light and electron microscopic study, J. Comp. Neurol., 217:264PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Patrick L. McGeer
    • 1
  • Edith G. McGeer
    • 1
  1. 1.Kinsmen Laboratory, Department of PsychiatryUniversity of British ColumbiaCanada

Personalised recommendations