Organization of Peptidergic Afferents to the Striatum

  • Haitao Hu
  • A. Jayaraman
Part of the Advances in Behavioral Biology book series (ABBI, volume 32)


Radioimmunoassay and immunocytochemical methods have shown that the striatum contains some of the highest levels of various neuropeptides. Among these, enkephalin, dynorphin and substance P have been localized within the efferent projection neurons of the striatum, and somatostatin and neuropeptide Y within the interneuronal system of the striatum (Graybiel and Ragsdale, 1983). Although there is considerable body of knowledge of the organization of peptidergic neurons intrinsic to the striatum, information concerning the various sources of peptidergic afferents to the striatum and their organization within the striatum is fragmentary. In the following chapter we discuss the possible sources of peptidergic afferents to the striatum. The emphasis will be on those peptides whose distribution pattern in the central nervous system has been studied extensively and on those peptides that have been the focus of study in our laboratory.


Ventral Tegmental Area Thyrotropin Release Hormone Lateral Hypothalamus Amygdaloid Complex Substantia Innominata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C.E., Fisher, R.S., Levine, M.S., Hull, C.D., and Buchwald, N.A. 1986, The distribution of cholecystokinin-immunoreactive neurons within the cat neostriatum and associated brain regions. Anat. Rec. 214:2.Google Scholar
  2. Adrian, T.E., Allen, J.M., Bloom, S.R., Ghatei, M.A., Rossor, M.N., Roberts, G.W., Crow, T.J., Tatemoto, K. and Polak, J.M., 1983, Neuropeptide Y distribution in human brain, Nature 306:584.PubMedCrossRefGoogle Scholar
  3. Allen, Y.S., Adrian, T.E., Allen, J.M., Tatemoto, K., Crow, T.J., Bloom, S.R., and Polak, J.M., 1983, Neuropeptide Y distribution in the rat brain, Science 221:877.PubMedCrossRefGoogle Scholar
  4. Arikuni,T., and Kubota, K., 1984, Substantia innominata projections to the caudate nucleus in macaque monkeys, Brain Res., 302: 184.PubMedCrossRefGoogle Scholar
  5. Bak, I.J., Markham, C.H., and Morgan, E.S., 1981, A striato-striatal connection in rats, Neurosci Abst., 7:193.Google Scholar
  6. Beal, M.F., and Martin, J.B., 1983, Effect of lesions on somatostatin-like immunoreactivity in the rat striatum, Brain Res., 266:67.PubMedCrossRefGoogle Scholar
  7. Beal, M.F., Domesick, V.B., and Martin, J.B., 1985a, Effects of lesions in the amygdala and periventricular hypothalamus on striatal somatostatin-like immunoreactivity, Brain Res., 330:309.PubMedCrossRefGoogle Scholar
  8. Beal, M.F., Marshall, P.E., Burd, G.D., Landis, D.M.D., and Martin, J.B., 1985b, Excitotoxin lesions do not mimic the alterations of somatostatin in Huntington’s disease, Brain Res., 361:135.PubMedCrossRefGoogle Scholar
  9. Beinfeld, M.C., 1983, Cholecystokinin in the central nervous system: A minireview, Neuropeptides 3:411.PubMedCrossRefGoogle Scholar
  10. Beinfeld, M.C., Lewis, M.E., Eiden, L.E., Nilaver, G., Pert, C.B., and Pert, A., 1983, The distribution of cholecystokinin and vasoactive intestinal peptide in rhesus monkey brain as determined by radioimmunoassay, Neuropeptides, 3:337.PubMedCrossRefGoogle Scholar
  11. Bennett-Clarke, C., Romagnano, M.A., and Joseph, S.A., 1980, Distribution of somatostatin in the rat brain: telencephalon and diencephalon, Brain Res., 188:473.PubMedCrossRefGoogle Scholar
  12. Chesselet, M.F., and Graybiel, A.M., 1986, Striatal neurons expressing somatostatin-like immunoreactivity: Evidence for a peptidergic interneuronal system in the cat, Neuroscience, 17:547.PubMedCrossRefGoogle Scholar
  13. Emson, P.C., Rehfeld, J.F., Langevine, H., and Rossor, M., 1980, Reduction in cholecystokinin-like immunoreactivity in the basal ganglia in Huntington’s disease, Brain Res, 198:497.PubMedCrossRefGoogle Scholar
  14. Emson, P.C., Bennett, G.W., and Rossor, M.N., 1981, The distribution and characterization of thyrotropin releasing hormone (TRH) in the human brain, Neuropept ides 2:115.CrossRefGoogle Scholar
  15. Fallon, J.H., Hicks, R., and Loughlin, S.E., 1983, The origin of cholecystokinin terminals in the basal forebrain of the rat: Evidence from immunofluorescence and retrograde tracing, Neurosci Lett., 37:29.PubMedCrossRefGoogle Scholar
  16. Fallon, J.H., and Leslie, F.M., 1986, Distribution of dynorphin and enkephalin peptides in the rat brain, J comp Neurol.,249: 293.PubMedCrossRefGoogle Scholar
  17. Goedert, M., and Emson, P.C., 1983, The regional distribution of neurotensin-like immunoreactivity in central and peripheral tissues of the cat, Brain Res 272:291.PubMedCrossRefGoogle Scholar
  18. Goedert, M., Mantyh, P.W, Hunt, S.P., and Emson, P.C., 1983, Mosaic distribution of neurotensin-like immunoreactivity in the cat striatum, Brain Res., 274:176.PubMedCrossRefGoogle Scholar
  19. Graybiel, A.M., and Ragsdale, C.W., 1983, Biochemical anatomy of the striatum, in: Chemical neuroanatomy, P.C. Emson, ed., Raven Press, New York.Google Scholar
  20. Graybiel, A.M., and Elde, R.P., 1983, Somatostatin-like immunoreactivity characterizes neurons of the nucleus reticularis thalami in the cat and monkey, J Neurosci 3:1308.PubMedGoogle Scholar
  21. Harkness, D.H., Gildner, J., and Brownfield, M.S., 1986, Immunocytochemical localiaztion of thyrotropin releasing hormone in the rhesus monkey central nervous system, Neurosci Abst., 12:294.Google Scholar
  22. Hendry, S.H.C., Jones, E.G., and Beinfeld, M.C., 1983 Cholecystokinin-immunoreactive neurons in rat and monkey cerebral cortex make symmetric synapses and have intimate associations with blood vessels, Proc. Natl. Acad. Sci. U.S.A. 80:2400.PubMedCrossRefGoogle Scholar
  23. Hendry, S.H.C., Jones, E.G., and Emson P.C., 1984, Morphology, distribution and synaptic relations of somatostatin- and neuropeptide Y-like immunoreactive neurons in the rat and monkey neocortex, J Neurosci., 4:2497.PubMedGoogle Scholar
  24. Hokfelt, T., Fuxe, K., Johansson, O., Jeffcoate, S., and White, N., 1975, Distribution of tyrotropin-releasing hormone (TRH) in the central nervous system as revealed by immunohistochemistry, Eur J Pharamc., 34:389.CrossRefGoogle Scholar
  25. Hokfelt, T., Elde, R., Fuxe, K., Johansson, O., Ljungdahl, A., Goldstein, M., Luft, R., Efendic, S., Nilsson, G., Terenius, L., Ganten, D., Jeffcoate, S.L., Rehfled, J., Said, S., Perez de la Mora, M., Possani, L., Tapia, R., Teran, L., and Palacios, R., 1978, Aminergic and peptidergic pathways in the nervous system with special reference to the hypothalamus, in: “The Hypothalamus”, S. Reichlin, R.J. Baldessarini, and J.B. Martin, eds, Raven Press, New York.Google Scholar
  26. Hokfelt, T., Rehfeld, J.F., Skirboll, L., Ivemark, B., Goldstein, M., and Markey, K., 1980, Evidence for co-existence of dopamine and CCK in meso-limbic neurons, Nature, 285:476.PubMedCrossRefGoogle Scholar
  27. Hokfelt, T., Johansson, O., and Goldstein, M., 1984, Chemical anatomy of the brain, Science 225:1326.PubMedCrossRefGoogle Scholar
  28. Hu, H., and Jayaraman, A., 1986a, The distribution pattern of peptidergic neurons and fibers within the cat thalamus, Neurosci Abst. 12:300.Google Scholar
  29. Hu, H., and Jayaraman, A., 1986b, The corticostriate projection neurons in cats: A WGA-HRP study, Anat Rec., 214:57.Google Scholar
  30. Hu, H., Rao, J.K., Prasad, C., and Jayaraman, A., 1987, Localization of Neuropeptide Y-Like Immunoreactivity in the cat hypothalamus, Peptides, (In Press).Google Scholar
  31. Jayaraman, A., 1983, Topographic organization and morphology of peripallidal and pallidal cells projecting to the striatum in cats, Brain Res., 275:279.PubMedCrossRefGoogle Scholar
  32. Jayaraman, A., 1985, Organization of thalamic projections in the nucleus accumbens and the caudate nucleus and its relation with hippocampal and other subcortical afferents, J comp Neurol., 231:394.CrossRefGoogle Scholar
  33. Jennes, L., Stumpf, W.E., and Kalivas, P., 1982, Neurotensin: Topographical distribution in rat brain by immunohistochemistry, J comp Neurol., 210:211.PubMedCrossRefGoogle Scholar
  34. Jones, E.G., Coulter, J.D., Burton, H., and Porter, R., 1977, Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory-motor cortex of monkeys, J comp Neurol., 173: 53.PubMedCrossRefGoogle Scholar
  35. Jones, E.G, Neurotransmitters in the cerebral cortex, J Neurosurg., 65:135.Google Scholar
  36. Kalivas, P.W., and Miller, J.S., 1984, Neurotensin neurons in the ventral tegmental areas project to the medial nucleus accumbens, Brain Res, 300:157.PubMedCrossRefGoogle Scholar
  37. Kalivas, P.W., 1985, Interactions between neuropeptides and dopamine neurons in the ventromedial mesencephalon, Neurosci and Biobehav Rev., 9:573.CrossRefGoogle Scholar
  38. Khachaturian, H., Akil, H., Brownstein, M.J., Olney, J.W. and Voigt, K.H., 1986, Further characterization of the extra-arcuate alpha-melanocyte stimulating hormone-like material in hypothalamus: biochemical and anatomical studies. Neuropeptides 7:291.PubMedCrossRefGoogle Scholar
  39. Manaker, S., Winokur, A., Rostene, W.H., and Rainbow, T.C., 1985, Autoradiographic localization of thyrotropin-releasing hormone receptors in the rat central nervous system, J Neurosci., 5: 167.PubMedGoogle Scholar
  40. Mantyh, P.W. and Kemp, J.A., 1983, The distribution of putative neurotransmitters in the lateral geniculate nucleus of the rat, Brain Res., 288:344.PubMedCrossRefGoogle Scholar
  41. McGinty, J.F., Van der Kooy, D., and Bloom, F.E., 1984, The distribution and morphology of opioid peptide immunoreactive neurons in the cerebral cortex of rats, J Neurosci, 4:1104.PubMedGoogle Scholar
  42. Mensah, P., and Deadwyler, S., 1974, The caudate nucleus of the rat: cell types and demonstration of a commissural system, J Anat (London)., 117:281.Google Scholar
  43. Merchenthaler, I., Maderdrut, J.L., Altshuler, R.A., and Petrusz, P., 1986, Immunocytochemical localization of proenkephalin-derived peptides in the central nervous system of the rat, Neuroscience 17:325.PubMedCrossRefGoogle Scholar
  44. Meyer, D.K., Beinfeld, M.C., Oertel, W.H., and Brownstein, M.J., 1982, Origin of the cholecystokinin containing fibers in the rat caudatoputamen, Science 215:187.PubMedCrossRefGoogle Scholar
  45. Mezey, E., Kiss, J.Z., Mueller, G.P., Eskay, R., O’Donohue, T.L., and M.Palkovits, 1985, Distribution of the pro-opiomelanocortin derived peptides, adrenocorticotropin hormone, alpha-melanocyte-stimulating hormone and B-endorphin [ACTH, alpha-MSH, B-END] in the rat hypothalamus, Brain Res., 328:341.PubMedCrossRefGoogle Scholar
  46. Molinari, M., Hendry, S.H.C., and Jones E.G., 1986, Neuropeptide like immunoreactivity in primate thalamus, Neurosci Abst., 12:294.Google Scholar
  47. Mori, M., Jayaraman, A., Prasad, C., Pegues, J., and Wilber, J.F., 1982, Distribution of histidyl-proline diketopiperazine (cyclo (His-Pro) and thyrotropin-releasing hormone (TRH) in the primate central nervous system, Brain Res, 245:183.PubMedCrossRefGoogle Scholar
  48. Morrison, J.H., Beniot, R., Magistretti, P.J., and Bloom, F.E., 1983, Immunohistochemical distribution of pro-somatostatin-related peptides in the cerebral cortex, Brain Res., 262:344.PubMedCrossRefGoogle Scholar
  49. O’Donohue, T.L., Dorsa, D.M., 1982, The opiomelanotropinergic neuronal and endocrine systems, Peptides 3:353.PubMedCrossRefGoogle Scholar
  50. Palkovits, M., Kobayashi, R.M., Brown, M., and Vale, W., 1980, Change in hypothalamic, limbic and extrapyramidal somatostatin levels following various hypothalamic transections in rat, Brain Res., 195:499.PubMedCrossRefGoogle Scholar
  51. Parnavelas, J.G., and McDonald, J.K., 1983, The cerebral cortex, in “Chemical Neuroanatomy”, P.C. Emson, ed, Raven Press, New York.Google Scholar
  52. Pelletier, G., Dasy, L., Kerkerian, L., and Cote, J., 1984, Immunocytochemical localization of neuropeptide Y in the human hypothalamus, Cell Tissue Res. 238:203.PubMedCrossRefGoogle Scholar
  53. Prasad, C., 1985, Thyrotropin-releasing hormone, in:Handbook of Neurochemistry, vol 8, A. Lajtha, ed, Plenum Publishing Corp, NewYork.Google Scholar
  54. Prasad, C., Jayaraman, A., Robertson, H.J.F. and Rao, J., 1987, Is all Cyclo (His-Pro) derived from thyrotropin releasing hormone? Neurochem Res., (In Press).Google Scholar
  55. Quinn, B., and Weber, E., 1986, Metorphamide and alpha-MSH antisera cross react immunoreactively with the same population of lateral hypothalamic neurons, Neurosci Abst., 12:407.Google Scholar
  56. Rao, J.K., Hu, H., Prasad, C., and Jayaraman A., 1986, The distribution pattern of adrenocorticotropin like immunoreactivity [ACTH-Li] in the cat central nervous system. Neurosci. Lett., 71:48.PubMedCrossRefGoogle Scholar
  57. Rao, J.K., Hu, H., Prasad, C., and Jayaraman, A., 1987, The distribution pattern of alpha MSH-like immunoreactivity in the cat central nervous system. Peptides, (In Press).Google Scholar
  58. Roberts, G.W., Woodhams, P.L., Polak, J.M., and Crow, T.J., 1982, Distribution of neuropeptides in the limbic system of the rat: The amygdaloid complex, Neuroscience, 7:99.PubMedCrossRefGoogle Scholar
  59. Royce, G.J., 1982, Laminar origin of cortical neurons which project upon the caudate nucleus: A horseradish peroxidase investigation in the cat, J comp Neurol., 205: 8.PubMedCrossRefGoogle Scholar
  60. Sandel, J.H., Graybiel, A.M., Chesselet, M.F., 1986, A new enzyme marker for striatal compartmentalization: NADPH-diaphorase activity in the caudate nucleus and putamen of the cat, J comp Neurol, 243:326.CrossRefGoogle Scholar
  61. Smith, Y., Parent, A., Kerkerian, L., and Pelletier, G., 1985, Distribution of neuropeptide Y immunoreactivity in the basal forebrain and upper brainstem of the squirrel monkey (Saimiri sciureus). J comp Neurol., 236:71.PubMedCrossRefGoogle Scholar
  62. Smith, Y., and Parent., 1986, Neuropeptide Y immunoreactive neurons in the striatum of cat and monkey: Morphological characteristics, intrinsic organization and co-localization with somatostatin. Brain Res., 372:241.PubMedCrossRefGoogle Scholar
  63. Steinbusch, H.W.M., Nieuwenhuys, R., Verhofstad, A.A.J., and van der Kooy, D., 1981, The nucleus raphe dorsalis of the rat and its projection upon the caudatoputamen: A combined cytoarchitectonic, immunohistochemical and retrograde transport study, J Physiol. (Paris), 77:157.Google Scholar
  64. Sugimoto, T., Takada, M., Kaneko, T., and Mizuno, N., 1984, Substance-P positive thalamocaudate neurons in the center median-parafasicular complex in the cat, Brain Res., 323:181.PubMedCrossRefGoogle Scholar
  65. Sugimoto, T., Itoh, K., Yasui, Y., Kaneko, T., and Mizuno, N., 1985, Coexistence of neuropeptides in projection neurons of the thalamus in the cat, Brain Res., 347:381.PubMedCrossRefGoogle Scholar
  66. Takagi, H., Mizuta, H., Matsuda, T., Inagaki, S., Tateishi, K., Hamaoka, T., 1984, The occurrence of cholecystokinin-like immunoreactive neurons in rat neostriatum:light and electron microscopic analysis, Brain Res., 309:346.PubMedCrossRefGoogle Scholar
  67. Umegaki, K., Shiosaka, S., Kawai, Y., Shinoda, K., Yagura, A., Shibasaki, T., Ling, N., and Tohyama, M., 1983, The distribution of alpha-melanocyte stimulating hormone [alpha MSH] in the central nervous system of the rat: An immunohistochemical study- I. Forebrain and upper brainstem. Cell. Molec. Biol. 29:377.Google Scholar
  68. Van der Kooy, D., Hunt, S.P., Steinbusch, H., and Verhoffstead, A.L.J., 1981, Separate populations of cholecystokinin and 5-hydroxytryptamine-containing neuronal cells in the rat dorsal raphe, and their contribution to the ascending raphe projections, Neurosci Lett., 26:25.PubMedCrossRefGoogle Scholar
  69. Vincent, S.R., Johansson, O., Hokfelt, T., Skirboll, L., Elde, R.P., Terenius, L., Kimmel, J., and Goldstein, M., 1983, NADPH-diaphorase: A selective histochemical marker for striatal neurons containing both somatostatin and avian pancreatic polypeptide-like immunoreactivity, J comp Neurol., 217:252.PubMedCrossRefGoogle Scholar
  70. Wahle, P., and Albus, K., 1985, Cholecystokinin octapeptide-like immunoreactive material in neurons of the intralaminar nuclei of the cat’s thalamus, Brain Res., 327:348.PubMedCrossRefGoogle Scholar
  71. Yamazoe, M., S. Shiosaka, A. Yagura, Y. Kawai, T. Shibasaki, N. Ling and M. Tohyama. 1984 The distribution of alpha-melanocyte stimulating hormone [alpha MSH] in the central nervous system of the rat: An immunohistochemical study-II. Lower brainstem. Peptides 5:721.PubMedCrossRefGoogle Scholar
  72. Zaborszky, L., Alheid, G.F., Beinfeld, M.C., Eiden, L.E., Heimer, L., and Palkovits, M, 1985, Cholecystokinin innervation of the ventral striatum: A morphological and radioimmunoassay study, Neuroscience, 14: 427.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Haitao Hu
    • 1
  • A. Jayaraman
    • 1
  1. 1.Department of NeurologyLouisiana State University School of MedicineNew OrleansUSA

Personalised recommendations