Altered Tonic Activity of Neurons in the Globus Pallidus and Subthalamic Nucleus in the Primate MPTP Model of Parkinsonism

  • William C. Miller
  • Mahlon R. DeLong
Part of the Advances in Behavioral Biology book series (ABBI, volume 32)


In recent years single cell recording studies in the basal ganglia of behaving animals have contributed significantly to our understanding of the role of these structures in normal motor function (see DeLong et al., 1984; Alexander et al., 1986). Little is known, however, of the changes in neuronal activity in the basal ganglia responsible for the profound abnormalities of motor function associated with diseases of these structures, such as Parkinson’s and Huntington’s diseases. The development of a suitable primate model of parkinsonism utilizing MPTP provides the opportunity to address these important questions. The systemic administration of MPTP, a selective neurotoxin, to monkeys produces a parkinsonian syndrome with rigidity, akinesia, and bradykinesia (Burns et al., 1983; Langston et al., 1984). Single cell recording in this animal model may provide direct information regarding the pathophysiology of the parkinsonian syndrome. Here we report preliminary observations of altered neuronal activity in the external and internal segments of the globus pallidus (GPe, GPi) and subthalamic nucleus (STN) in an animal rendered parkinsonian with MPTP.


Basal Ganglion Globus Pallidus Supplementary Motor Area Tonic Activity Parkinsonian Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann. Rev. Neurosci. 9:357–381PubMedCrossRefGoogle Scholar
  2. Burns, R. S., Chiueh, C. C., Markey, S. P., Ebert, M. H., Jacobowitz, D. M., & Kopin, I. J. (1983) A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyll-l,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA 80:4546–4550PubMedCrossRefGoogle Scholar
  3. Chiueh, C. C., Burns, R. S., Markey, S. P., Jacobowitz, D. M., & Kopin, I. J. (1985) III. Primate model of parkinsonism: Selective lesion of nigrostriatal neurons by l-methyl-4phenyl-l-l,2,3,6-tetrahydropyridine produces an extrapyramidal syndrome in rhesus monkeys. Life Sci. 36: 213–218PubMedCrossRefGoogle Scholar
  4. Crossman, A.R., Mitchell, I.J., & Sambrook, M.A. (1985) Regional brain uptake of 2-deoxyglucose in N-methyl-1,2,3,6-tetrahydripyridine (MPTP)-induced parkinsonism in the macaque monkey. Neuropharmacol. 24: 587–591CrossRefGoogle Scholar
  5. Crutcher, M. D. & DeLong, M. R. (1984) Single cell studies of the primate putamen. II. Relations to direction of movement and pattern of muscular activity. Exp. Brain Res. 53:244–258PubMedCrossRefGoogle Scholar
  6. DeLong, M. R. (1971) Activity of pallidal neurons during movement. J. Neurophysiol. 34:414–427Google Scholar
  7. DeLong, M.R., Georgopoulos, A,P., Crutcher, M.D., Mitchell, S.J., Richardson, R.T., & Alexander, G.E. (1984) Functional organization of the basal ganglia: contributions of single-cell recording studies. In: D. Evered and M. O’Connor (eds.) Functions of the Basal Ganglia, Ciba Foundation symposium 107. Pitman Publishing Ltd., London pp 64–82Google Scholar
  8. DiChiara, G., Morelli, M., Porceddu, M.L., & Gessa, G.L. (1979) Role of thalamic gamma-aminobutyrate in motor functions: Catalepsy and ipsiversive turning after intrathalamic muscimol. Neurosci. 4:1453–1465CrossRefGoogle Scholar
  9. DiPaolo, T., Bedard, P., Daigle, M., & Boucher, R. (1986) Long-term effects of MPTP on central and peripheral catecholamine and indoleamine concentrations in monkeys. Brain Res. 379:286–293CrossRefGoogle Scholar
  10. Filion, M. (1979) Effects of interruption of the nigrostriatal pathway and of dopaminergic agents on the spontaneous activity of globus pallidus neurons in the awake monkey. Brain Res. 178:425–441PubMedCrossRefGoogle Scholar
  11. Filion, M., Boucher, R., & Bedard, P. (1985) Globus pallidus unit activity in the monkey during the induction of parkinsonism by l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP). Soc. Neurosci. Abstr. 11: 1160Google Scholar
  12. Filion, M., Tremblay, L., & Bedard, P.J. (1986) Responses of globus pallidus neurons to electrical stimulation of striatum and to passive joint rotation in MPTP treated monkeys. Soc. Neurosci. Abstr. 12:208Google Scholar
  13. Georgopoulos, A. P., DeLong, M. R., & Crutcher, M. D. (1983) Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey. J. Neurosci. 3:1586–1598PubMedGoogle Scholar
  14. Haber, S. & Elde, R. (1981) Correlation between met-enkephalin and substance P immunoreactivity in the primate globus pallidus. Neurosci. 6: 1291–1297CrossRefGoogle Scholar
  15. Haber, S.N. (1986) Neurotransmitters in the human and nonhuman primate basal ganglia. Human Neurobiol. 5:159–168Google Scholar
  16. Hummelsheim, H., Weisendanger, M., & Bianchetti, M. (1986) The supplementary motor area modulates perturbation-evoked discharges of neurones in the precentral motor cortex. Neurosci. Lett. 67:119–122PubMedCrossRefGoogle Scholar
  17. Klockgether, T., Schwarz, M., Turski, L., Wolfarth, S., & Sontag, K. H. (1985) Rigidity and catalepsy after injections of muscimol into the ventromedial thalamic nucleus: an electromyographic study in the rat. Exp. Brain Res. 58:559–569PubMedCrossRefGoogle Scholar
  18. Klockgether, T., Schwarz, M., Turski, L., & Sontag, K.H. (1986) The rat ventromedial thalamic nucleus and motor control: Role of N-methyl-D-aspartate-mediated excitation, GABAergic inhibition, and muscarininc transmission. J. Neurosci. 6:1702–1711PubMedGoogle Scholar
  19. Langston, J.W., Forno, L.S., Rebert, C.S,, & Irwin, I. (1984) Selective nigral toxicity after systemic administration of l-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res. 292:390–394PubMedCrossRefGoogle Scholar
  20. McGeer, E. G., Staines, W. A., & McGeer, P. L. (1984) Neurotransmitters in the basal ganglia. Can. J. Neurol. Sci. 11:89–99PubMedGoogle Scholar
  21. Mercuri, N., Bernardi, G., Calabresi, P., Cotugno, A., Levi, G., & Stanzione, P. (1985) Dopamine decreases cell excitability in rat striatal neurons by pre- and post-synaptic mechanisms. Brain Res. 358:110–121PubMedCrossRefGoogle Scholar
  22. Mitchell, I. J., Cross, A. J., Sambrook, M. A., & Crossman, A. R. (1985a) Sites of the neurotoxic action of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine in the macaque monkey include the ventral tegmental area and the locus coeruleus. Neurosci. Lett. 61:195–200PubMedCrossRefGoogle Scholar
  23. Mitchell, I.J., Sambrook, M.A., & Crossman, A.R. (1985b) Subcortical changes in the regional uptake of [3H]-2-deoxyglucose in the brain of the monkey during experimental choreiform dyskinesia elicited by injection of gamma-aminobutyric acid antagonist into the subthalamic nucleus. Brain 108:405–422PubMedCrossRefGoogle Scholar
  24. Mitchell, S.J., Richardson, R.T., Baker, F.H., & DeLong, M.R. (1987) The primate globus pallidus: Neuronal activity related to direction of movement. Exp. Brain Res., in pressGoogle Scholar
  25. Montgomery, E.B., Buchholz, S.R., Delitto, A., & Collins, R.C. (1985) Effects of MPTP on basal ganglia physiology in monkeys. Soc. Neurosci. Abstr. 11:1161Google Scholar
  26. North, R.A. (1979) Opiates, opioid peptides and single neurones. Life Sci. 24:1527–1546PubMedCrossRefGoogle Scholar
  27. Pinnock, R.D., Woodruff, G.N., & Turnbull, M.J. (1983) Actions of substance P, MIF, TRH and related peptides in the substantia nigra, caudate nucleus and nucleus accumbens. Neuropharmacol. 22:687–696CrossRefGoogle Scholar
  28. Scheel-Kruger, J. (1986) Dopamine-GABA interactions: Evidence that GABA transmits, modulates and mediates dopaminergic functions in the basal ganglia and the limbic system. Acta Neurol. Scand. 73:9–49Google Scholar
  29. Schultz, W., Studer, A., Jonsson, G., Sundstrom, E., & Mefford, I. (1985) Deficits in behavioral initiation and execution processes in monkeys with l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine-induced parkinsonism. Neurosci. Lett. 59:225–232PubMedCrossRefGoogle Scholar
  30. Schwartzman, R. J. & Alexander, G. M. (1985) Changes in the local cerebral metabolic rate for glucose in the l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) primate model of Parkinson’s disease. Brain Res. 358:137–143PubMedCrossRefGoogle Scholar
  31. Starr, M.S. & Summerhayes, M. (1983) Role of the ventromedial nucleus of the thalamus in motor behavior: I. Effects of focal injections of drugs. Neurosci. 10:1157–1169CrossRefGoogle Scholar
  32. Tatton, W. G., Eastman, M. J., Bedingham, W., Verrier, M. C., & Bruce, I. C. (1984) Defective utilization of sensory input as the basis for bradykinesia, rigidity and decreased movement repertoire in Parkinson’s disease: A hypothesis. Can. J. Neurolog. Sci. 11:136–143Google Scholar
  33. Toan, D. L. & Schultz, W. (1985) Responses of rat pallidum cells to cortex stimulation and effects of altered dopaminergic activity. Neurosci. 15:683–694CrossRefGoogle Scholar
  34. Wiesendanger, M. (1986) Recent developments in studies of the supplementary motor area of primates. Rev. Physiol. Biochem. Pharmacol. 103: 2–59Google Scholar
  35. Yoshida, M., Rabin, A., & Anderson, M. (1972) Monosynaptic inhibition of pallidal neurons by axon collaterals of caudatonigral fibers. Exp. Brain Res. 15:333–347PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • William C. Miller
    • 1
  • Mahlon R. DeLong
    • 1
  1. 1.Departments of Neurology and NeuroscienceThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations