Basal Ganglia Mechanisms Mediating Experimental Dyskinesia in the Monkey

  • A. R. Crossman
  • M. A. Sambrook
  • I. J. Mitchell
  • A. Jackson
  • C. E. Clarke
  • R. G. Robertson
  • S. Boyce
Part of the Advances in Behavioral Biology book series (ABBI, volume 32)


Disordered function of the basal ganglia may lead to a wide spectrum of motor abnormalities, depending upon the nature of the precipitating factor. Thus, for example, destruction of the subthalamic nucleus produces hemiballismus, degeneration of the neostriatum induces chorea, and interruption of dopaminergic nigostriatal transmission gives rise to parkinsonism. The origin of abnormal activity in other conditions, such as athetosis and dystonia, remains speculative but almost certainly involves the basal ganglia, most likely the neostriatum.


Basal Ganglion Globus Pallidus Subthalamic Nucleus Lateral Segment Medial Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auker, C.R., Meszler, R.M. and Carpenter, D.O., 1983, Apparent discrepancy between single-unit activity and [14C] deoxyglucose labelling in optic tectum of the rattlesnake, J. Neuropysiol., 49:1504.Google Scholar
  2. Bankiewicz, K.S., Oldfield, E.H., Chiueh, C.C., Doppman, J.L., Jacobowitz, D.M. and Kopin, I.J., .1986, Hemiparkinsonism in monkeys after unilateral internal carotid artery infusion of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP), Life Sci., 39:7.PubMedCrossRefGoogle Scholar
  3. Bird, E.D. and Iversen, L.L., 1974, Huntington’s chorea. Postmortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia, Brain, 97:457.PubMedCrossRefGoogle Scholar
  4. Burns, R.S., Chiueh, C.C., Markey, S.P., Ebert, M.H., Jacobowitz, D.M.and Kopin, I.J., 1983, A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine, Proc. Natl. Acad. Sci. U.S.A., 80:4546.PubMedCrossRefGoogle Scholar
  5. Carpenter, M.B., Batton, R.R., Carleton, S.C. and Keller, J.T., 1981a, Interconnections and organization of pallidal and subthalamic nucleus neurons in the monkey, J. comp. Neurol., 197:579.PubMedCrossRefGoogle Scholar
  6. Carpenter, M.B., Carleton, S.C., Keller, J.T. and Conte, P., 1981b, Connections of the subthalamic nucleus in the monkey, Brain. Res., 224:1PubMedCrossRefGoogle Scholar
  7. Carpenter, M.B. and Sutin, J., 1983, “Human Neuroanatomy,” Williams and Wilkins, Baltimore.Google Scholar
  8. Carpenter, M.B., Whittier, J.R. and Mettler, V.A., 1950, Analysis of choreoid hyperkinesia in the rhesus monkey: surgical and pharmacological analysis of hyperkinesia resulting from lesions in the subthalamic nucleus of Luys, J. comp. Neurol., 92:293.PubMedCrossRefGoogle Scholar
  9. Cooper, I.S., 1969, “Involuntary Movement Disorders,” Hoeber Medical Division, Harper and Row, New York.Google Scholar
  10. Crossman, A.R. and Jackson, A., 1984, A new experimental model of choreoathetosis in the primate, J. Physiol., 350:36.Google Scholar
  11. Crossman, A.R., Mitchell, I.J. and Sambrook, M.A., 1985, Regional brain uptake of 2-deoxyglucose in N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the macaque monkey, Neuropharmacology, 24:587.PubMedCrossRefGoogle Scholar
  12. Crossman, A.R., Sambrook, M.A. and Jackson, A., 1980, Experimental hemiballismus in the baboon produced by injection of a gammaaminobutyric acid. antagonist into the basal ganglia, Neurosci. Letts., 20:369.CrossRefGoogle Scholar
  13. Crossman, A.R., Sambrook, M.A. and Jackson, A., 1984, Experimental hemichorea/hemiballismus in the monkey. Studies on the intracerebral site of action in a drug-induced dyskinesia, Brain, 107:579.PubMedCrossRefGoogle Scholar
  14. DeLong, M.R. and Georgopoulos, A.P., 1981, Motor functions of the basal ganglia, in: “Handbook of Physiology”, Section 1, Volume II, Part 2, V.B. Brooks, ed., American Physiological Society, Bethesda.Google Scholar
  15. DeVito, J.L. and Anderson, M.E., 1982, An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta, Exp. Brain Res., 46:107.PubMedCrossRefGoogle Scholar
  16. Feger, J. and Crossman, A.R., 1984, Identification of different subpopulations of neostriatal neurones projecting to globus pallidus or substantia nigra in the monkey: a retrograde fluorescence doublelabelling study, Neurosci. Letts., 49:7.CrossRefGoogle Scholar
  17. Fonnum, F., Grofova, I. and Rinvik, E., 1978, Origin and distribution of glutamate decarboxylase in the nucleus subthalamicus of the cat, Brain Res., 153:370.PubMedCrossRefGoogle Scholar
  18. Fox, C.A., Rafols, J.A. and Cowan, W.M., 1975, Computer measurements of axis cylinder diameters of radial fibers and “comb” bundle fibres, J. comp. Neurol., 159:201.PubMedCrossRefGoogle Scholar
  19. Garcia-Rill, E., 1986, The basal ganglia and the locomotor regions, Brain Res. Rev., 11:47.CrossRefGoogle Scholar
  20. Hammond, C., Shibazaki, T. and Rouzaire-Dubois, B., 1983, Branched output neurons of the rat subthalamic nucleus: electrophysiological study of the synaptic effects on identified cells of the two main target nuclei, the entopeduhcular nucleus and the substantia nigra, Neuroscience, 9:511.PubMedCrossRefGoogle Scholar
  21. Jackson, A. and Crossman, A.R., 1984, Experimental choreoathetosis produced by injection of a gamma-aminobutyric acid antagonist into the lentiform nucleus in the monkey, Neurosci. Letts., 46:41CrossRefGoogle Scholar
  22. Kim, R., Nakano, K., Jayaraman, A. and Carpenter M.B., 1976, Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey, J. comp. Neurol., 169:263.PubMedCrossRefGoogle Scholar
  23. Langston, J.W. and Ballard, P., 1984, Parkinsonism induced by l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): Implications for treatment and the pathogenesis of Parkinson’s disease, Can. J. neurol. Sci., 11:160.PubMedGoogle Scholar
  24. Mata, M., Fink, D. J., Gainer, H., Smith, C.B., Davidsen, L., Savaki, H., Schwartz, W.J. and Sokoloff, L., 1980, Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity, J. Neurochem., 34:213.PubMedCrossRefGoogle Scholar
  25. McGeer, P.L., McGeer, E.G. and Fibiger, H.C., 1973, Choline acetylase and glutamic acid decarboxylase in Huntington’s chorea. A preliminary study, Neurology, 23:912.PubMedGoogle Scholar
  26. Mitchell, I.J., Cross, A.J., Sambrook, M.A. and Crossman, A.R., 1985a, Sites of the neurotoxic action of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine in the monkey include the ventral tegmental area and the locus coeruleus, Neurosci. Letts., 61:195CrossRefGoogle Scholar
  27. Mitchell, I. J., Cross A.J., Sambrook, M.A. and Crossman, A.R., 1986a, N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine-induced parkinsonism in the monkey: neurochemical pathology and regional brain metabolism, J. neural. Transm., Suppl. XX:41.Google Scholar
  28. Mitchell, I. J., Cross, A.J., Sambrook, M.A. and Crossman, A.R., 1986b, Neural mechanisms mediating l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine-induced parkinsonism in the monkey: relative contributions of the striatopallidal and striatonigral pathways as suggested by 2-deoxyglucose uptake, Neurosci. Letts., 63:61.CrossRefGoogle Scholar
  29. Mitchell, I.J., Jackson A., Sambrook, M.A. and Crossman, A.R., 1985b, Common neural mechanisms in experimental chorea and hemiballismus in the monkey. Evidence from 2-deoxyglucose autoradiography, Brain Res., 339:346.PubMedCrossRefGoogle Scholar
  30. Mitchell, I.J., Sambrook, M.A. and Crossman, A.R., 1985c, Subcortical changes in the regional uptake of [3H]-2-deoxyglucose in the brain of the monkey during experimental choreiform dyskinesia elicited by injection of a gamma-aminobutric acid antagonist into the subthalamic nucleus, Brain, 108:421.CrossRefGoogle Scholar
  31. Nauta, H.J.W. and Cole, M., 1978, Efferent projections of the subthalamic nucleus: an autoradiographic study in monkey and cat, J. comp. Neurol., 180:1.PubMedCrossRefGoogle Scholar
  32. Nauta, W.J.H. and Mehler, W.R., 1966, Projections of the lentiform nucleus in the monkey, Brain Res., 1:3.PubMedCrossRefGoogle Scholar
  33. Needham, G.A., Soden, P.D., Sambrook, M.A. and Crossman, A.R., 1983, A remotely operated pump for intracerebral micro-injection in the primate, J. Neurosci. Meth., 7:281.CrossRefGoogle Scholar
  34. Rouzaire-Dubois, B., Hammond, C., Hamon, B. and Feger, J., 1980,Pharmacological blockade of the globus pallidus-induced inhibitory response of subthalamic cells in the rat, Brain Res., 200:321.PubMedCrossRefGoogle Scholar
  35. Schwartz, W.J., Smith, C.B., Davidsen, L., Savaki, H. and Sokoloff, L., 1979, Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat, Science, 205:723PubMedCrossRefGoogle Scholar
  36. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlack, C.S., Pettigrew, K.D., Sakurada, O. and Shinohara, M., 1977, The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat, J. Neurochem, 28:897.PubMedCrossRefGoogle Scholar
  37. Szabo, J., 1967, The efferent projections of the putamen in the monkey, Exp. Neurol., 19:463.PubMedCrossRefGoogle Scholar
  38. Szabo, J., 1970, Projections from the body of the caudate nucleus in the rhesus monkey, Exp. Neurol., 27:1PubMedCrossRefGoogle Scholar
  39. Tsubokawa, T. and Sutin, J., 1972, Pallidal and tegmental inhibition of oscillatory slow waves and unit activity in the subthalamic nucleus, Brain Res., 41:101.PubMedCrossRefGoogle Scholar
  40. Van der Kooy D. and Hattori, T., 1980, Single subthalamic nucleus neurones project to both the globus pallidus and substantia nigra in rat,J. comp. Neurol., 192:751.CrossRefGoogle Scholar
  41. Van der Kooy, D., Hattori, T., Shannak, K. and Hornykiewicz, O., 1981, The pallido-subthalamic projection in rat: anatomical and biochemical studies, Brain Res., 204:253.PubMedCrossRefGoogle Scholar
  42. Vincent, S. R., Kimura, H. and McGeer, E.G., 1982, A histochemical study of GABA-transaminase in the efferents of the pallidum, Brain Res., 241:162.PubMedCrossRefGoogle Scholar
  43. Whittier, J.R., 1947, Ballism and the subthalamic nucleus (nucleus hypothalamicus; corpus Luysi), Arch. Neurol. Psychiat., 58:672.PubMedGoogle Scholar
  44. Whittier, J.R. and Mettler, F.A., 1949, Studies on the subthalamus of the rhesus monkey. II. Hyperkinesia and other physiologic effects of subthalamic lesions, with special reference to the subthalamic nucleus of Luys, J. comp. Neurol., 90:319.PubMedCrossRefGoogle Scholar
  45. Yoshida, M., Rabin, A. and Anderson, M., 1972, Monosynaptic inhibition of pallidal neurons by axon collaterals of caudato-nigral fibers, Exp. Brain Res., 15:333.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • A. R. Crossman
    • 1
  • M. A. Sambrook
    • 1
  • I. J. Mitchell
    • 1
  • A. Jackson
    • 1
  • C. E. Clarke
    • 1
  • R. G. Robertson
    • 1
  • S. Boyce
    • 1
  1. 1.Experimental Neurology Group, Department of Cell and Structural Biology, Medical SchoolUniversity of ManchesterManchesterEngland

Personalised recommendations