Recent Research on the Centromedian and Parafascicular Nuclei

  • G. James Royce
Part of the Advances in Behavioral Biology book series (ABBI, volume 32)


The basal ganglia, by strict definition, are “large subcortical nuclear masses classically considered to be telencephalic derivatives” (Carpenter, 1983). However, there are other regions of the brain, such as the substantia nigra, that are closely related to the basal ganglia, but which lie outside of the telencephalon. It has been known for a long time that the centromedian (CM) and parafascicular (Pf) nuclei are intimately associated with the basal ganglia. These nuclei are part of the thalamus and represent the caudal group of intralaminar nuclei. The present paper will concentrate on recent evidence from other laboratories, as well as from data generated by my associates and I, about these nuclei in the cat.


Superior Colliculus Thalamic Reticular Nucleus Zona Incerta Principal Neuron Efferent Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arikuni, T., and Kubota, K., 1986, The organization of prefrontocaudate projections and their laminar origin in the macaque monkey: a retrograde study using HRP-gel, J. Comp. Neurol., 244:492.PubMedCrossRefGoogle Scholar
  2. Beckstead, R.M., 1984, The thalamostriatal projection in the cat, J. Comp. Neurol., 223:313.PubMedCrossRefGoogle Scholar
  3. Beckstead, R.M., Domesick, V.B., and Nauta, W.J.H., 1979, Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res., 175:191.PubMedCrossRefGoogle Scholar
  4. Beckstead, R.M., and Kersey, K.S., 1985, Immunohistochemical demonstration of differential substance P-, met-enkephalin-, and glutamic-aciddecarboxylase-containing cell body and axon distributions in the corpus striatum of the cat, J. Comp. Neurol., 232:481.PubMedCrossRefGoogle Scholar
  5. Bentivoglio, M., Macchi, G., and Albanese, A., 1981, The cortical projections of the thalamic intralaminar nuclei, as studied in cat and rat with the multiple fluorescent retrograde tracing technique, Neurosci. Letts. 26:5.CrossRefGoogle Scholar
  6. Berman, A.L., 1968, “The Brain Stem of the Cat. A Cytoarchitectonic Atlas with Stereotaxic Coordinates,” The University of Wisconsin Press, Madison.Google Scholar
  7. Berman, A.L., and Jones, E.G., 1982, “The Thalamus and Basal Telencephalon of the Cat. A Cytoarchitectonic Atlas with Stereotaxic Coordinates,” The University of Wisconsin Press, Madison.Google Scholar
  8. Carpenter, M.B., 1983, Interconnections between the corpus striatum and brain stem nuclei, in: “The Basal Ganglia: Structure and Function,” J.S. McKenzie, R.E. Kemm, and C.N. Wilcock, eds., Plenum Press, New York.Google Scholar
  9. Carpenter, M.B., Nakano, K., and Kim, R., 1976, Nigrothalamic projections in the monkey demonstrated by autoradiographic techniques, J. Comp. Neurol., 165:401.PubMedCrossRefGoogle Scholar
  10. Carpenter, M.B., and Peter, P., 1972, Nigrostriatal and nigrothalamic fibers in the rhesus monkey, J. Comp. Neurol., 144:93.PubMedCrossRefGoogle Scholar
  11. Clavier, R.M., Atmadja, S., and Fiberger, H.C., 1978, Nigrothalamic projections in the rat as demonstrated by orthograde and retrograde tracing techniques, Brain Res. Bull., 1:379.CrossRefGoogle Scholar
  12. Comans, P.E., and Snow, P.J., 1981, Ascending projections to nucleus parafascicularis of the cat, Brain Res., 230:337.PubMedCrossRefGoogle Scholar
  13. DeVito, J.L., and Anderson, M.E., 1982, An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta, Exp. Brain Res., 46:107.PubMedCrossRefGoogle Scholar
  14. Divac, I., LaVail, J.H., Rakic, P., and Winston, K.R., 1977, Heterogeneous afferents to the inferior parietal lobule of the rhesus monkey revealed by the retrograde transport method, Brain Res., 123:197.PubMedCrossRefGoogle Scholar
  15. Duggan, A.W., and Hall, J.G., 1977, Morphine, naloxone, and the responses of medial thalamic neurones of the cat, Brain Res., 122:49.PubMedCrossRefGoogle Scholar
  16. Edwards, S.B., 1972, The ascending and descending projection of the red nucleus in the cat: an experimental study using an autoradiographic tracing method, Brain Res., 48:45.PubMedCrossRefGoogle Scholar
  17. Gerfen, C.R., Staines, W.A., Aubuthnott, G.W., and Fibiger, H.C., 1982, Crossed connections of the substantia nigra in the rat, J. Comp. Neurol., 207:283.PubMedCrossRefGoogle Scholar
  18. Graham, J., 1977, An autoradiographic study of the efferent connections of the superior colliculus in the cat, J. Comp. Neurol., 173:629.PubMedCrossRefGoogle Scholar
  19. Graybiel, A.M., and Hickey, T.L., 1982, Chemospecificity of ontogenetic units in the striatum: demonstration by combining [3H] thymidine neuronography and histochemical staining, Proc. Natl. Acad. Sci., U.S.A., 79:198.PubMedCrossRefGoogle Scholar
  20. Graybiel, A.M., Pickel, V.M., Joh, T.H., Reis, D.J., and Ragsdale, C.W., 1981, Direct demonstration of a correspondence between the dopamine islands and acetylcholinesterase patches in the developing striatum, Proc. Natl. Acad. Sci., U.S.A., 78:5871.PubMedCrossRefGoogle Scholar
  21. Graybiel, A.M., and Ragsdale, C.W., 1978a, Histochemically distinct compartments in the striatum of human, monkey, and cat demonstrated by acetylthiocholinesterase staining, Proc. Natl. Acad. Sci., U.S.A., 75:5723.PubMedCrossRefGoogle Scholar
  22. Graybiel, A.M., and Ragsdale, C.W., 1978b, Striosomal organization of the caudate nucleus: I. Acetylcholinesterase histochemistry of the striatum in the cat, rhesus monkey, and human being, Neurosci. Abstr., 4:44.Google Scholar
  23. Graybiel, A.M., Ragsdale, C.W., and Moon Edley, S., 1979, Compartments in the striatum of the cat observed by retrograde cell labeling, Exp. Brain Res., 34:189.PubMedCrossRefGoogle Scholar
  24. Graybiel, A.M., Ragsdale, C.W., Yoneoka, E.S., and Elde, R.P., 1981, An immunohistochemical study of enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate peptides are arranged in register with the striosomal compartments visible by acetylcholinesterase staining, Neuroscience, 6:377.PubMedCrossRefGoogle Scholar
  25. Grofová, I., and Rinvik, E., 1974, Cortical and pallidal projections to the nucleus ventralis lateralis thalami, Anat. Embryol., 146:113.PubMedCrossRefGoogle Scholar
  26. Guillery, R.W., 1966, A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat, J. Comp. Neurol., 128:21.PubMedCrossRefGoogle Scholar
  27. Harding, B.N., 1973a, An ultrastructural study of the centre median and ventrobasal thalamic nuclei of the monkey, Brain Res., 54:335.PubMedCrossRefGoogle Scholar
  28. Harding, B.N., 1973b, An ultrastructural study of the termination of afferent fibres within the ventrolateral and centre median nuclei of the monkey thalamus, Brain Res., 54:341.PubMedCrossRefGoogle Scholar
  29. Harnois, C., and Filion, M., 1982, Pallidofugal projections to thalamus and midbrain: a quantitative antidromic activation study in monkeys and cats, Exp. Brain Res., 47:277.PubMedCrossRefGoogle Scholar
  30. Harting, J.K., Huerta, M.F., Frankfurter, A.J., Strominger, N.L., and Royce, G.J., 1980, Ascending pathways from the monkey superior colliculus: an autoradiographic analysis, J. Comp. Neurol., 192:853.PubMedCrossRefGoogle Scholar
  31. Hazlett, J.C., Dutta, C.R., and Fox, C.A., 1976, The neurons in the centromedian-parafascicular complex of the monkey (Macaca mulatta): a Golgi study, J. Comp. Neurol., 168:41.PubMedCrossRefGoogle Scholar
  32. Hendry, S.H.C., Jones, E.G., and Graham, J., 1979, Thalamic relay nuclei for cerebellar and certain related fiber systems in the cat, J. Comp. Neurol., 185:679.PubMedCrossRefGoogle Scholar
  33. Herkenham, M., 1980, laminar organization of thalamic projections to the rat neocortex, Science, 207:532.PubMedCrossRefGoogle Scholar
  34. Herkenham, M., and Nauta, W.J.H., 1977, Afferent connections of the habenular nuclei in the rat: a horseradish peroxidase study, with a note on the fiber-of-passage problem, J. Comp. Neurol., 173:123.PubMedCrossRefGoogle Scholar
  35. Herkenham, M., and Pert, C.B., 1981, Mosaic distribution of opiate receptors, parafascicular projections, and acetylcholinesterase in rat striatum, Nature, 291:415.PubMedCrossRefGoogle Scholar
  36. Holstege, G., and Collewijn, H., 1982, The efferent connections of the nucleus of the optic tract and the superior colliculus in the rabbit, J. Comp. Neurol., 209:139.PubMedCrossRefGoogle Scholar
  37. Hopkins, D.A., and Holstege, G., 1978, Amygdaloid projections to the mesencephalon, pons, and medulla oblongata in the cat, Exp. Brain Res., 32:529.PubMedCrossRefGoogle Scholar
  38. Hopkins, D.A., and Lawrence, D.G., 1975, On the absence of a rubrothalamic projection in the monkey with observations on some ascending mesencephalic projections, J. Comp. Neurol, 161:269.PubMedCrossRefGoogle Scholar
  39. Huerta, M.F., and Harting, J.K., 1982, Tectal control of spinal cord activity: neuroanatomical demonstration of pathways connecting the superior colliculus with the cervical spinal cord grey, in: “Descending Pathways to the Spinal Cord,” Progress in Brain Res, Vol. 57, H.G.J.M. Kuypers and G.F. Martin, eds., Elsevier Biomedical Press, Amsterdam.Google Scholar
  40. Ilinsky, I.A., and Kultas-Ilinsky, K., 1984, An autoradiographic study of topographical relationships between pallidal and cerebellar projections to the cat thalamus, Exp. Brain Res., 54:95.PubMedCrossRefGoogle Scholar
  41. Ingram, W.R., Hannet, F.I., and Randon, S.W., 1932, The topography of the nuclei of the diencephalon of the cat, J. Comp. Neurol., 55:333.CrossRefGoogle Scholar
  42. Itoh, K., and Mizuno, N., 1977, Topographical arrangement of thalamocortical neurons in the centrolateral nucleus (CL) of the cat, with special reference to a spino-thalamo-motor cortical path through the CL, Exp. Brain Res., 30:471.PubMedGoogle Scholar
  43. Jasper, H.H., and Ajmone-Marsan, C., 1954, “A Stereotaxic Atlas of the Diencephalon of the Cat,” National Research Council of Canada, Ottawa.Google Scholar
  44. Jayaraman, A., 1985, Organization of thalamic projections in the nucleus accumbens and the caudate nucleus in cats and its relation with hippocampal and other subcortical afferents, J. Comp. Neurol., 231:396.PubMedCrossRefGoogle Scholar
  45. Jones, E.G., 1985, “The Thalamus,” Plenum Press, New York.Google Scholar
  46. Jones, E.G., and Burton, H., 1974, Cytoarchitecture and somatic sensory connectivity of thalamic nuclei other than of ventrobasal complex in the cat, J. Comp. Neurol., 154: 395.PubMedCrossRefGoogle Scholar
  47. Jones, E.G., and Leavitt, R.Y., 1974, Retrograde axonal transport and the demonstration of nonspecific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat, and monkey, J. Comp. Neurol., 154:349.PubMedCrossRefGoogle Scholar
  48. Jones, E.G., Wise, S.P., and Coulter, J.D., 1979, Differential thalamic relationships of sensory-motor and parietal cortical fields in monkeys, J. Comp. Neurol., 183:833.PubMedCrossRefGoogle Scholar
  49. Kaelber, W.W., and Smith, T.B., 1979, Projections of the zona incerta in the cat, with stimulation controls, Exp. Neurol., 63:177.PubMedCrossRefGoogle Scholar
  50. Kalil, K., 1978, Patch-like termination of thalamic fibers in the putamen of the rhesus monkey: an autoradiographic study, Brain Res., 333:339.Google Scholar
  51. Kasdon, D.L., and Jacobson, S., 1978, The thalamic afferents to the inferior parietal lobule of the rhesus monkey, J. Comp. Neurol., 177:685.PubMedCrossRefGoogle Scholar
  52. Katz, L.C., Burkhalter, A., and Dreyer, W.J., 1984, Fluorescent latex microspheres as a retrograde neuronal marker forin vivo and in vitro studies of visual cortex, Nature, 310:498.PubMedCrossRefGoogle Scholar
  53. Kievet, J., and Kuypers, H.J.M., 1975, Subcortical afferents to the frontal lobe in the rhesus monkey studied by means of retrograde horseradish peroxidase transport, Brain Res., 85:261.CrossRefGoogle Scholar
  54. Kim, R., Nakano, K., Jayaraman, A., and Carpenter, M.B., 1976, Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey, J. Comp. Neurol., 169:263.PubMedCrossRefGoogle Scholar
  55. Kitai, S.T., 1981, Electrophysiology of the corpus striatum and brain stem integrating system, in: “Handbook of Neurophysiology,” V.B. Brooks, ed., Williams and Wilkins, Baltimore.Google Scholar
  56. Kitai, S.T., Kocsis, J.D., and Wood, J., 1976, Origin and characteristics of the cortico-caudate afferents: An anatomical and electrophysiological study, Brain Res., 118:137.PubMedCrossRefGoogle Scholar
  57. Kuo, J.S., and Carpenter, M.B., 1973, Organization of pallidothalamic projections in the rhesus monkey, J. Comp. Neurol., 151:201.PubMedCrossRefGoogle Scholar
  58. Künzle, H., 1976, Thalamic projections from the precentral motor cortex in Macaca fascicularis, Brain Res., 105:253.PubMedCrossRefGoogle Scholar
  59. Künzle, H., and Akert, K., 1977, Efferent connections of cortical area 8 (frontal eye field) in Macaca fascicularis: a reinvestigation using the autoradiographic technique, J. Comp. Neurol., 173:147.PubMedCrossRefGoogle Scholar
  60. Leontovich, T.A., 1975, Quantitative analysis and classification of subcortical forebrain neurons,in: “Golgi Centennial Symposium,” M. Santini, ed., Raven Press, New York.Google Scholar
  61. Leontovich, T.A., and Zhukova, G.P., 1963, The specificity of the neuronal structure and topography of the reticular formation in the brain and spinal cord of Carnivora, J. Comp. Neurol., 121:347.PubMedCrossRefGoogle Scholar
  62. Luys, J.B., 1865, Recherches sur le système nerveux cérébro-spinal: sa structure, ses fonctions, et ses maladies, J.B. Baillière, Paris.Google Scholar
  63. McGuinness, C.M., and Krauthamer, G.M., 1980, The afferent projections to the centrum medianum of the cat as demonstrated by retrograde transport of horseradish peroxidase, Brain Res., 184:255.PubMedCrossRefGoogle Scholar
  64. Mehler, W.R., 1966, Further notes on the center median nucleus of Luys, in: “The Thalamus,” D.P. Purpura and M.D. Yahr, eds., Columbia University Press, New York.Google Scholar
  65. Mesulam, M., 1978, Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction-product with superior sensitivity for visualizing neural afferents and efferents, J. Histochern. Cytochem., 26: 106.CrossRefGoogle Scholar
  66. Mesulam, M., 1982, Principles of horseradish peroxidase neurohistochemistry and their applications for tracing neural pathways-axonal transport, enzyme histochemistry, and light microscopic analysis, In: “Tracing Neural Connections with Horseradish Peroxidase,” M. Mesulam, ed., John Wiley and Sons, New York.Google Scholar
  67. Mesulam, M., Van Hoesen, G.W., Pandya, D.N., and Geschwind, T., 1977, Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry, Brain Res., 136:393.PubMedCrossRefGoogle Scholar
  68. Moon Edley, S., and Graybiel, A.M., 1983, The afferent and efferent connections of the feline nucleus tegmenti pedunculopontinus, pars compacta, J. Comp. Neurol., 217:187.CrossRefGoogle Scholar
  69. Morán, A., Avendaño, C., and Reinoso-Suárez, F., 1982, Thalamic afferents to the motor cortex in the cat: a horseradish peroxidase study, Neurosci. Letts., 33:229.CrossRefGoogle Scholar
  70. Nauta, H.J.W., 1979, Projections of the pallidal complex: an autoradiographic study in the cat, Neuroscience, 4:1853.PubMedCrossRefGoogle Scholar
  71. Nauta, W.J.H., and Mehler, W.R., 1966, Projections of the lentiform nucleus in the monkey, Brain Res., 1:3.PubMedCrossRefGoogle Scholar
  72. Nauta, W.J.H., and Whitlock, D.G., 1954, An anatomical analysis of the non-specific thalamic projection system, in: “Brain Mechanisms and Consciousness,” J.F. Delafresnaye, ed., Blackwell, Oxford.Google Scholar
  73. Niimi, K., and Kuwahara, E., 1973, The dorsal thalamus of the cat and comparison with monkey and man, J. Hirnforsch., 14:303.PubMedGoogle Scholar
  74. Norita, M., and Kawamura, K., 1980, Subcortical afferents to the monkey amygdala: an HRP study, Brain Res., 190:225.PubMedCrossRefGoogle Scholar
  75. Oka, H., 1980, Organization of the cortico-caudate projections: a horseradish peroxidase study in the cat, Exp. Brain Res., 40:203.PubMedCrossRefGoogle Scholar
  76. Parent, A., and DeBellefeuille, L., 1983, The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method, Brain Res., 278:11.PubMedCrossRefGoogle Scholar
  77. Parent, A., Mackey, A., and DeBellefeuille, L., 1983, The subcortical afferents to caudate nucleus and putamen in primate: a fluorescence retrograde double labeling study, Neuroscience, 10:1137.PubMedCrossRefGoogle Scholar
  78. Pearl, G.S., and Anderson, K.V., 1980, Interactions between nucleus centrum medianum and gigantocellular nociceptive neurons, Brain Res. Bull., 5:203.PubMedCrossRefGoogle Scholar
  79. Pearson, J.C., Norris, J.R., and Phelps, C.H., 1984, The cytoarchitecture and some efferent projections of the centromedian-parafascicular complex in the lesser bushbaby (Galago senegalensis), J. Comp. Neurol., 225:554.PubMedCrossRefGoogle Scholar
  80. Peschanski, M., and Besson, J.M., 1984, A spino-reticulo-thalamic pathway in the rat: an anatomical study with reference to pain transmission, Neuroscience, 12:165.PubMedCrossRefGoogle Scholar
  81. Powell, T.P.S., and Cowan, W.M., 1956, A study of thalamo-striate relations in the monkey, Brain, 79:364.PubMedCrossRefGoogle Scholar
  82. Price, J.L., and Amaral, D.G., 1981, An autoradiographic study of the projections of the central nucleus of the monkey amygdala, Neuroscience, 1:1242.PubMedGoogle Scholar
  83. Ragsdale, C.W., and Graybiel, A.M., 1981, The fronto-striatal projection in the cat and monkey, and its relationship to inhomogeneities established by acetylcholinesterase histochemistry, Brain Res., 208:259.PubMedCrossRefGoogle Scholar
  84. Ramón y Cajal, S., 1904, Las fibras nerviosas de origen cerebral del tuberculo o cuadrigémino anterior y tálamo óptico, C.R. Congr. Intern. Med., Madrid, 14:36.Google Scholar
  85. Ramón y Cajal, S., 1911, “Histologie du Système Nerveux de l’Homme et des Vertèbrès,” Maloine, Paris.Google Scholar
  86. Ramón-Moliner, E., 1962, An attempt at classifying nerve cells on the basis of their dendritic patterns, J. Comp. Neurol., 119:211.PubMedCrossRefGoogle Scholar
  87. Ramón-Moliner, E., 1975, Specialized and generalized dendritic patterns, in: “Golgi Centennial Symposium, Perspectives in Neurobiology,” M. Santini, ed., Raven Press, New York.Google Scholar
  88. Ricardo, J.A., 1981, Efferent connections of the subthalamic region in the rat, II. The zona incerta, Brain Res. 214:43.PubMedCrossRefGoogle Scholar
  89. Rinvik, E., 1968, A re-evaluation of the cytoarchitecture of the ventral nuclear complex of the cat’s thalamus on the basis of corticothalamic connections, Brain Res., 8:237.PubMedCrossRefGoogle Scholar
  90. Rioch, D.M., 1929, Studies on the diencephalon of Carnivora: Part I, The nuclear configuration of the thalamus, epithalamus, and hypothalamus of the dog and cat, J. Comp. Neurol., 49:1.CrossRefGoogle Scholar
  91. Rioch, D.M., 1931, A note on the centre mèdian nucleus of Luys, J. Anat. 65:324.PubMedGoogle Scholar
  92. Royce, G.J., 1978a, Cells of origin of subcortical afferents to the caudate nucleus: a horseradish peroxidase study in the cat, Brain Res., 153:465.PubMedCrossRefGoogle Scholar
  93. Royce, G.J., 1978b, Autoradiographic evidence for a discontinuous projection to the caudate nucleus from the centromedian nucleus in the cat, Brain Res., 146:145.PubMedCrossRefGoogle Scholar
  94. Royce, G.J., 1982, Laminar origin of cortical neurons which project upon the caudate nucleus : a horseradish peroxidase investigation in the cat, J. Comp. Neurol., 205:8.PubMedCrossRefGoogle Scholar
  95. Royce, G.J., 1983a, Single thalamic neurons which project to both the rostral cortex and caudate nucleus studied with the fluorescent double labeling method, Exp. Neurol., 79:773.PubMedCrossRefGoogle Scholar
  96. Royce, G.J., 1983b, Cells of origin of corticothalamic projections upon the centromedian and parafascicular nuclei in the cat, Brain Res., 258:11.CrossRefGoogle Scholar
  97. Royce, G.J., 1983c, Cortical neurons with collateral projections to both the caudate nucleus and the centromedian-parafascicular thalamic complex: a fluorescent retrograde double labeling study in the cat, Exp. Brain Res., 50:157.PubMedCrossRefGoogle Scholar
  98. Royce, G.J., and Harting, J.K., 1976, Projections of the superior colliculus to the intralaminar thalamic nuclei in the cat and rhesus monkey, Neurosci. Abstr., 2:1090.Google Scholar
  99. Royce, G.J., and Laine, E.J., 1984, Efferent projections of the caudate nucleus, including cortical projections of the striatum and other basal ganglia: an autoradiographic and horseradish peroxidase investigation in the cat, J. Comp. Neurol., 226:28.PubMedCrossRefGoogle Scholar
  100. Royce, G.J., and Mourey, R.J., 1985, Efferent connections of the centromedian and parafascicular thalamic nuclei: an autoradiographic investigation in the cat, J. Comp. Neurol., 235:277.PubMedCrossRefGoogle Scholar
  101. Sato, M., Ttoh, K., and Mizuno, N., 1979, Distribution of thalamo-caudate neurons in the cat as demonstrated by horseradish peroxidase, Exp. Brain Res., 34:143.PubMedCrossRefGoogle Scholar
  102. Scheibel, M.E., and Scheibel, A.B., 1966, Patterns of organization in specific and nonspecific thalamic fields, in: “The Thalamus,” D.P. Purpura and M.D. Yahr, eds., Columbia University Press, New York.Google Scholar
  103. Schlag, J., and Schlag-Rey, M., 1970, Induction of oculomotor responses by electrical stimulation of the prefrontal cortex in the cat, Brain Res., 22:1.PubMedCrossRefGoogle Scholar
  104. Schwab, M., Agid, Y., Glowinski, L., and Thoenen, H., 1977, Retrograde axonal transport of 125I-tetanus toxin as a tool for tracing fiber connections in the central nervous system: connections of the rostral part of the rat neostriatum, Brain Res., 126:211.PubMedCrossRefGoogle Scholar
  105. Simma, K., 1950, Zur Cytoarchitektonik des menschlichen Centrum medianum thalami, Monatsschr. Psychiatr. Neurol., 120:119.PubMedCrossRefGoogle Scholar
  106. Steriade, M., Sakai, K., and Jouvet, M., 1984, Bulbo-thalamic neurons related to thalamocortical activation processes during paradoxical sleep, Exp. Brain Res., 54:463.PubMedCrossRefGoogle Scholar
  107. Strick, P.L., 1970, Cortical projections of the feline thalamic nucleus ventralis lateralis, Brain Res., 20:130.PubMedCrossRefGoogle Scholar
  108. Strick, P.L., 1973, Light microscopic analysis of the cortical projection of the thalamic ventrolateral nucleus in the cat, Brain Res., 55:1.PubMedCrossRefGoogle Scholar
  109. Strick, P.L., 1975, Multiple sources of thalamic input to the primate motor cortex, Brain Res., 88:372.PubMedCrossRefGoogle Scholar
  110. Strick, P.L., and Sterling, P., 1974, Synaptic termination of afferents from the ventrolateral nucleus of the thalamus in the cat motor cortex: a light and electron microscopic study, J. Comp. Neurol., 153:77.PubMedCrossRefGoogle Scholar
  111. Strominger, N.L., Truscott, T.C., Miller, R.A., and Royce, G.J., 1979, An autoradiographic study of the rubroolivary tract in the rhesus monkey, J. Comp. Neurol., 183:33.PubMedCrossRefGoogle Scholar
  112. Sugimoto, T., and Hattori, T., 1983, Confirmation of thalamosubthalamic projections by electron microscopic autoradiography, Brain Res., 267:335.PubMedCrossRefGoogle Scholar
  113. Sugimoto, T., Hattori, T., Mizuno, N., Itoh, K., and Sato, M., 1983, Direct projections from the centre median-parafascicular complex to the subthalamic nucleus in the cat and rat, J. Comp. Neurol., 214:209.PubMedCrossRefGoogle Scholar
  114. Sugimoto, T., Mizuno, N., and Itoh, K., 1981, An autoradiographic study of the terminal distribution of cerebellothalamic fibers in the cat, Brain Res., 215:29.PubMedCrossRefGoogle Scholar
  115. Tseng, G., and Royce, G.J., 1986, A Golgi and ultrastructural analysis of the centromedian nucleus of the cat, J. Comp. Neurol., 245:359.PubMedCrossRefGoogle Scholar
  116. Tsubokawa, T., and Moriyasu, N., 1975, Follow-up results of centre median thalamotomy for relief of intractable pain: a method of evaluating the effectiveness during operation, Confin. Neurol., 37:280.PubMedCrossRefGoogle Scholar
  117. VanBuren, J.M., and Borke, R.C., 1972, “Variations and Connections of the Human Thalamus, I. The Nuclei and Cerebral Connections of the Human Thalamus,” Springer-Verlag, Heidelberg.Google Scholar
  118. Vedovato, M., 1978, Identification of afferent connections to cortical area 6αβ of the cat by means of retrograde horseradish peroxidase transport, Neurosci. Letts., 9:303.CrossRefGoogle Scholar
  119. Vogt, B.A., Rosene, D.L., and Pandya, D.N., 1979, Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey, Science, 204:205.PubMedCrossRefGoogle Scholar
  120. Vogt, C., and Vogt, O., 1941, Thalamusstudien I-III: I. Zur Einfuhrung, II. Homogenitat und Grenzgestaltung der Grisea des Thalamus, III. Das Griseum centrale (Centrum medianum Luys), J. Psychol. Neurol., 50:32.Google Scholar
  121. Yamamoto, T., Samejima, A., and Oka, H., 1985, An intracellular analysis of the entopeduncular inputs on the centrum medianum-parafascicular nuclear complex in cats, Brain Res., 348:343.PubMedCrossRefGoogle Scholar
  122. Watanabe, K., and Kawana, E., 1982, The cells of origin of the incertofugal projections to the tectum, thalamus, tegmentum, and spinal cord in the rat: a study using the autoradiographic and horseradish peroxidase methods, Neuroscience, 7:2389.PubMedCrossRefGoogle Scholar
  123. Woolsey, C.N., 1958, Organization of somatic sensory and motor areas of the cerebral cortex,in: “Biological and Biochemical Bases of Behavior,” H.E. Harlow and C.N. Woolsey, eds., University of Wisconsin Press, Madison.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • G. James Royce
    • 1
  1. 1.Department of AnatomyUniversity of WisconsinMadisonUSA

Personalised recommendations