GABA and Enkephalin Immunoreactivity in Monkey Neostriatum

  • Pedro Pasik
  • Tauba Pasik
  • Gay R. Holstein
  • Jozsef Hámori
Conference paper
Part of the Advances in Behavioral Biology book series (ABBI, volume 32)


At the first IBAGS Symposium in Australia, we presented some of our work on the immunocytochemical localization of serotonin in the primate basal ganglia (Pasik et al., 1984). It was the only report at the meeting utilizing this technique. The program of this second symposium contains over a dozen such papers, bearing witness to the power of immunocytochemistry to unravel the intimate organization of the nervous system, particularly at the synaptic level. The advent of additional antibodies which recognize small molecules, such as neuroactive amino acids, together with the development of double labeling techniques at the ultrastructural level, have contributed greatly to the strength of the method. We have used such an antibody directed against GABA (Hodgson et al., 1985), and the localization of this compound together with leu-enkephalin (ENK) in the same section, to visualize specific immunoreactive elements in the neostriatum of the macaque monkey.


Globus Pallidus Symmetric Synapse Ferritin Particle Double Label Technique Neuroactive Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aronin, N., DiFiglia, M., Graveland, G.A., Schwartz, W.J., and Wu, J-Y. (1984) Localization of immunoreactive enkephalins in GABA synthesizing neurons of the rat neostriatum. Brain Res., 300:376–380.PubMedCrossRefGoogle Scholar
  2. Bolam, J.P., Clarke, D.J., Smith, A.D., and Somogyi, P. (1983) A type of aspiny neuron in the rat neostriatum accumulates ( 3H) ɣ -aminobutyric acid: Combination of Golgi-staining, autoradiography, and electron microscopy. J. Comp. Neurol., 213:121–134.PubMedCrossRefGoogle Scholar
  3. Bradley, R.H., Kitai, S.T., and Wu, J.-Y. (1984) An immunocytochemical analysis of methionine enkephalin, substance P, and glutamic acid decarboxylase within neostriatal neurons. J. Am. Osteopath. Assoc, 84 (Supp.):98–110.PubMedGoogle Scholar
  4. Chang, H.T., Wilson, C.J., and Kitai, S.T. (1981) Single neostriatal efferent axons in the globus pallidus: a light and electron microscopic study. Science, 213:915–918.PubMedCrossRefGoogle Scholar
  5. DiFiglia, M., Pasik, P., and Pasik, T. (1976) A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res., 114:245–256.PubMedCrossRefGoogle Scholar
  6. DiFiglia, M., Pasik, T., and Pasik, P. (1980) Ultrastructure of Golgi-impregnated and gold-toned spiny and aspiny neurons in the monkey neostriatum. J. Neurocytol, 9:471–491.PubMedCrossRefGoogle Scholar
  7. Fox, C.A., Rafols, J.A., and Cowan, W.M. (1975) Computer measurements of axis cylinder diameters of radial fibers and “comb” bundle fibers. J. Comp. Neurol., 159:201–224.PubMedCrossRefGoogle Scholar
  8. Gale, K., Hong, J.-S., and Guidotti, A. (1977) Presence of substance P and GABA in separate striatonigral neurons. Brain Res., 136:371–375.PubMedCrossRefGoogle Scholar
  9. Haber, S., and Elde, R. (1981) Correlation between met-enkephalin and substance P immunoreactivity in the primate globus pallidus. Neuroscience, 6:1291– 1297.PubMedCrossRefGoogle Scholar
  10. Hodgson, A.J., Penke, B., Erdei, A., Chubb, I.W., and Somogyi, P. (1985) Antisera to ɣ-aminobutyric acid: Production and characterization using a new model system. J. Histochem. Cytochem., 33:229–239.PubMedCrossRefGoogle Scholar
  11. Oertel, W.H., Riethmuller, G., Mugnaini, E., Schmechel, D.E., Weindl, A., Gramsch, C., and Herz, A. (1983) Opioid peptide-like immunoreactivity localized in gabaergic neurons of rat neostriatum and central amygdaloid nucleus. Life Sci., 33 (Suppl. l):73–76.PubMedCrossRefGoogle Scholar
  12. Park, M.R., Lighthall, J.W., and Kitai, S. (1980) Recurrent inhibiton in the rat neostriatum. Brain Res., 194:359–369.PubMedCrossRefGoogle Scholar
  13. Pasik, P., Pasik, T., and DiFiglia, M. (1976) Quantitative aspects of neuronal organization in the neostriatum of the macaque monkey. In: The Basal Ganglia, M.D. Yahr, ed., Raven Press, New York, pp. 57–90.Google Scholar
  14. Pasik, P., Pasik, T., and DiFiglia, M. (1977) Interneurons in the neostriatum of monkeys. In: The Neuron Concept To-Day, J. Szentágothai, J. Hámori, and E.S. Vizi (eds.), Budapest, Adakemiai Kiadó, pp. 153–162.Google Scholar
  15. Pasik, P., Pasik, T., and DiFiglia, M. (1979) The internal organization of the neostriatum in mammals. In The Neostriatum, I. Divac and R.G.E. Oberg (eds.), Oxford, Pergamon Press, pp. 5–36.Google Scholar
  16. Pasik, P., Pasik, T., and Holstein, G.R. (1987) Ultrastructural chemoanatomy of the basal ganglia: an overview. In Parkinson’s Disease, M.D. Yahr and K.J. Bergmann (eds.), Adv. Neurol., Vol. 45, New York: Raven Press, pp. 59–66.Google Scholar
  17. Pasik, P., Pasik, T., Holstein, G.R., and Hamori, J. (submitted) GABAergic elements in the neuronal circuits of the monkey neostriatum. A light and electron microscopic immunocytochemical study. J. Comp. Neurol.Google Scholar
  18. Pasik, P., Pasik, T., Holstein, G.R., and Pecci Saavedra, J. (1984) Serotoninergic innervation of the monkey basal ganglia: an immunocytochemical, light and electron microscopic study. In: The Basal Ganglia. Structure and Function, J. McKenzie, R.E. Kemm and L.N. Wilcock, eds., Plenum Press, New York, pp. 115–129.Google Scholar
  19. Pasik, T., and Pasik, P. (1982) Serotoninergic afferents in monkey neostriatum. Acta Biol. Hung., 33:277–288.Google Scholar
  20. Phelps, P.E., Houser, C.R., and Vaughn, J.E. (1985) Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: a correlated light and electron microscopic study of cholinergic neurons and synapses. J. Comp. Neurol., 238:286–307.PubMedCrossRefGoogle Scholar
  21. Ribak, C.E., Vaughn, J.E., and Roberts, E. (1979) The GABA neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry. J. Comp. Neurol., 187:261–284.PubMedCrossRefGoogle Scholar
  22. Richardson, T.L., Miller, J.J., and McLennan, H. (1977) Mechanisms of excitation and inhibition in the nigrostriatal system. Brain Res., 127:219–234.PubMedCrossRefGoogle Scholar
  23. Schwyn, R.C., and Fox, C.A. (1974) The primate substantia nigra: a Golgi and electron microscopic study. J. Hirnforsch., 15:95–126.PubMedGoogle Scholar
  24. Sternberger, L.A. (1979) Immunocytochemistry. New York: Wiley, pp. 354.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Pedro Pasik
    • 1
  • Tauba Pasik
    • 1
  • Gay R. Holstein
    • 1
  • Jozsef Hámori
    • 1
  1. 1.Departments of Neurology and AnatomyMount Sinai School of Medicine, CUNYNew YorkUSA

Personalised recommendations