On the Basal Ganglia of a Reptile: The Lizard Gekko Gecko

  • F. T. Russchen
  • W. J. A. J. Smeets
  • A. H. M. Lohman
Part of the Advances in Behavioral Biology book series (ABBI, volume 32)


Since reptiles possess markedly developed basal ganglia, quite some attention has been paid to the comparison of the organization of these structures with that in mammals. The presumed homologue of the mammalian nucleus accumbens and corpus striatum (caudate nucleus, putamen, and globus pallidus) is in reptiles generally referred to as the paleostriatum (Ariens Kappers et al., 1936). Within the paleostriatum most investigators recognize a laterally located striatum and a medially located nucleus accumbens (e.g. Northcutt, 1981). The so defined striatum can be subdivided into a rostral parvocellular part and a caudal magnocellular part. Further, ventrolaterally located large cells of the caudal part have been compared to the large cells of the mammalian globus pallidus (Holmgren, 1922), and Källen (1951, 1962), on the basis of embryological arguments, in fact homologized this ventrolateral area of the reptilian striatum with the globus pallidus of mammals. The existence of a distinct structure in the striatum was confirmed by histochemical techniques (e.g. succinate dehydrogenase, Baker-Cohen, 1968; acetylcholinesterase and catecholamines, Parent and Olivier, 1970). At that time little was known about the connections of the reptilian paleostriatum and its subdivisions. Then, studies with experimental tracing techniques of the afferent connections of the paleostriatum from the thalamus (e.g. Hall and Ebner, 1970) and cortex (Lohman and Mentink, 1972) appeared, later followed by studies on its efferent connections (e.g. Hoogland, 1977; Voneida and Sligar, 1979; Brauth and Kitt, 1980; Reiner et al., 1980; Ten Donkelaar and de Boer-van Huizen, 1981). These studies generally dealt with the paleostriatum as a whole, and not so much with its subdivisions.


Nucleus Accumbens Ventral Tegmental Area AChE Activity Globus Pallidus Medial Forebrain Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariens Kappers, C.U., Huber, G.C., and Crosby, E.C., 1936, The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, Reprinted 1960, Hafner, New York.Google Scholar
  2. Baker-Cohen, K.F., 1968, Comparative enzyme histochemical observations on submammalian brains, Ergebn. Anat. Entw. Gesch., 40:l.Google Scholar
  3. Beckstead, R.M. and Cruz, C.J., 1986, Striatal axons to the globus pallidus, entopeduncular nucleus and substantia nigra come mainly from separate cell populations in cat, Neuroscience, 19:147.PubMedCrossRefGoogle Scholar
  4. Brauth, S.E. and Kitt, C.A., 1980, The paleostriatal system of Caiman crocodilus, J. Comp. Neurol., 189:437PubMedCrossRefGoogle Scholar
  5. Brauth, S.E., Reiner, A., Kitt, C.A., and Karten, H.J., 1983, The substance P-containing striatotegmental path in reptiles: An immunohistochemical study, J. Comp. Neurol., 219:305.PubMedCrossRefGoogle Scholar
  6. Brauth, S.E., 1984, Enkephalin-like immunoreactivity within the telencephalon of the reptile Caiman crocodilus, Neuroscience, 11:345.PubMedCrossRefGoogle Scholar
  7. Bruce, L.L., and Butler, A.B., 1984a, Telencephalic connections in lizards. I. Projections to cortex, J. Comp. Neurol., 229:585.PubMedCrossRefGoogle Scholar
  8. Bruce, L.L., and Butler, A.B., 1984b, Telencephalic connections in lizards. II. Projections to anterior dorsal ventricular ridge, J. Comp. Neurol., 229:602.PubMedCrossRefGoogle Scholar
  9. Buijs, R.M., Geffard, M., Pool, C.W., and Hoorneman, E.M.D., 1984, The dopaminergic innervation of the supraoptic and paraventricular nucleus. A light and electron microscopical study, Brain Res., 323:65.PubMedCrossRefGoogle Scholar
  10. Divac, I., and Mogensen, J., 1985, The prefrontal “cortex” in the pigeon. Catecholamine histofluorescence, Neuroscience, 15:677.PubMedCrossRefGoogle Scholar
  11. Donoghue, J.P., and Herkenham, M., 1983, Multiple patterns of corticostriatal projections and their relationship to opiate receptor patches in rats, Abstr. Soc. Neurosci., 9:15.Google Scholar
  12. Faull, R.L.M., and Mehler, W.R., 1978, The cells of origin of nigrotectal, nigrothalamic and nigrostriatal projections in the rat, Neuroscience, 3:989.PubMedCrossRefGoogle Scholar
  13. Geneser-Jensen, F.H., and Blackstad, T.W., 1971, Distribution of acetylcholinesterase in the hippocampal region of the guinea pig. I Entorhinal area, parasubiculum and presubiculum, Z. Zellforsch. Mikrosk. Anat., 114:460.PubMedCrossRefGoogle Scholar
  14. Gerfen, C.R., 1985, The neostriatal mosaic. I Compartmental organization of projections from the striatum to the substantia nigra in the rat, J. Comp. Neurol., 236:454.PubMedCrossRefGoogle Scholar
  15. Graybiel, A.M., 1984, Neurochemically specified subsystems in the basal ganglia. In: Functions of the basal ganglia. Pitman, London, Ciba Foundation Symposium 107, P 114.Google Scholar
  16. Graybiel, A.M., and Ragsdale, C.W. Jr., 1979, Fiber connections of the basal ganglia. In: Development and Chemical Specificity of Neurons, Progress in Brain Research, 51, P 239CrossRefGoogle Scholar
  17. Groenewegen, H.J., and Russchen, F.T., 1984, Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic and mesencephalic structures, A tracing and immunohistochemical study in the cat, J. Comp. Neurol., 223:247.CrossRefGoogle Scholar
  18. Haber, S., and Elde, R., 1981, Correlation between met-enkephalin and substance P immunoreactivity in the primate globus pallidus, Neuroscience, 6:1291.PubMedCrossRefGoogle Scholar
  19. Haber, S.N., and Nauta, W.J.H., 1983, Ramifications of the globus pallidus in the rat as indicated by patterns of immunohistochemistry, Neuroscience, 9:245.PubMedCrossRefGoogle Scholar
  20. Haber, S, and Watson, S.J.,1986, The comparative distribution of enkephalin, dynorphin and substance P in the human globus pallidus and basal forebrain, Neuroscience, 14:1011.CrossRefGoogle Scholar
  21. Hall, W.G., and Ebner, F.F., 1970, Thalamotelencephalic projections in the turtle (Pseudemys scripta), J. Comp. Neurol., 101.Google Scholar
  22. Heimer, L., and Wilson, R.D., 1975, The subcortical projections of the allocortex: Similarities in the neural associations of the hippocampus, the piriform cortex and the neocortex, In: Golgi Centennial Symposium. New York: Raven Press, p 177.Google Scholar
  23. Herkenham, M., Moon Edley, S., and Stuart, J., 1984, Cell clusters in the nucleus accumbens of the rat, and the mosaic relationship of opiate receptors, acetylcholinesterase and subcortical afferent terminations, Neuroscience, 11:561.PubMedCrossRefGoogle Scholar
  24. Holmgren, N., 1922, Points of view concerning forebrain morphology in lower vertebrates, J. Comp. Neurol., 34:391.CrossRefGoogle Scholar
  25. Hoogland, P.V., 1977, Efferent connections of the striatum in Tupinambis nigropunctatus, J. Morphol., 152:229.PubMedCrossRefGoogle Scholar
  26. Jessel, T.M., Emson, P.C., Paxinos, G., and Cuello, A.C., 1978, Topographic projections of substance P and GABA pathways in the striato-pallido-nigral system: A biochemical and immunohistochemical study, Brain Res., 152:487CrossRefGoogle Scholar
  27. Källen, B., 1951, On the ontogeny of the reptilian forebrain. Nuclear structures and ventricular sulci, J. Comp. Neurol., 95:307.PubMedCrossRefGoogle Scholar
  28. Källen, B., 1962, Embryogenesis of brain nuclei in the chick telencephalon, Ergebn. Anat. Entw. Gesch., 36:62.Google Scholar
  29. Kitt, C. A., and Brauth, S.E., 1981, Projections of the paleostriatum upon the midbrain tegmentum in the pigeon, Neuroscience, 6:1551.PubMedCrossRefGoogle Scholar
  30. Kuhlenbeck, H., 1981, Ueber die Grundbestandteile des Zwisschenhirnbauplans bei Reptilien, Gegenbaurs Morp. Jahrb., 66:244.Google Scholar
  31. Kuhlenbeck, H., 1937. The ontogenetic development of the diencephalic centers in a birds brain (chick) and comparison with the reptilian and mammalian diencephalon, J. Comp. Neurol., 66:23.CrossRefGoogle Scholar
  32. Lohman, A.H.M., and Mentink, G.M., 1972, Some cortical connections of the tegu lizard (Tupinambis teguixin), Brain Res., 45:325.PubMedCrossRefGoogle Scholar
  33. Lohman, A.H.M., and Van Woerden-Verkley, I., 1976, Further studies on the cortical connections of the tegu lizard, Brain Res., 103:9.PubMedCrossRefGoogle Scholar
  34. Lohman, A.H.M., and Van Woerden-Verkley, I., 1978, Ascending connections to the forebrain in the tegu lizard, J. Comp. Neurol., 182:555.PubMedCrossRefGoogle Scholar
  35. Loopuijt, L.D., and VanderKooy, D., 1985, Organization of the striatum: collateralization of its efferent axons, Brain Res., 348:86.PubMedCrossRefGoogle Scholar
  36. May, P.J., and Hall, W.C., 1986, The sources of the nigrotectal pathways, Neuroscience, 19:159PubMedCrossRefGoogle Scholar
  37. Mogenson, G.J., Jones, D.L., and Yim, C.Y., 1980, From motivation to action: Functional interface between the limbic system and the motor system, Progr. Neurobiol., l4:69.CrossRefGoogle Scholar
  38. Nauta, W.J.H., and Karten, H.J., 1970, A general profile of the vertebrate brain, with sidelights on the ancestry of cerebral cortex. In: The Neurosciences: Second Study Program, New York: Rockefeller Univ., p 7.Google Scholar
  39. Nauta, W.J.H., and Domesick, V.B., 1984, Afferent and efferent relationships of the basal ganglia. In: Functions of the Basal Ganglia, Pitman, London, Ciba Foundation Symposium 107, P 3.Google Scholar
  40. Northcutt, R.G., 1981, Evolution of the telencephalon in nonmammals, Ann. Rev. Neurosci., 4:301.PubMedCrossRefGoogle Scholar
  41. Parent, A., 1973, Demonstration of a catecholaminergic pathway from the midbrain to the striatoamygdaloid complex in the turtle (Chrysemys picta), J. Anat., 114:379.PubMedGoogle Scholar
  42. Parent, A, 1976, Striatal afferent connections in the turtle (Chrysemys picta) as revealed by retrograde axonal transport of horseradish peroxidase, Brain Res., 108:25.PubMedCrossRefGoogle Scholar
  43. Parent, A., and Olivier, A., 1970, Comparative histochemical study of the corpus striatum, J. Hirnforsch., 12:73.PubMedGoogle Scholar
  44. Parent, A., Bouchard, C., and Smith, Y., 1984, The striatopallidal and striatonigral projections: two distinct fiber systems in primate, Brain Res., 303:385PubMedCrossRefGoogle Scholar
  45. Price, J.L., and Amaral, D.G., 1981, An autoradiographic study of the projections of the central nucleus of the monkey amygdala, J. Neuroscience, 11:1242.Google Scholar
  46. Reiner, A., Brauth, S.E., Kitt, C.A., and Karten, H.J., 1980, Basal ganglionic pathways to the tectum: Studies in reptiles, J. Comp. Neurol., 193:565.PubMedCrossRefGoogle Scholar
  47. Reiner, A., Krause, J.E., Keyser, K.T., Eldred, W.D., and McKelvy, J.F., 1984a, The distribution of substance P in turtle nervous system: A radioimmunoassay and immunohistochemical study, J. Comp. Neurol., 226:50.PubMedCrossRefGoogle Scholar
  48. Reiner, A., Brauth,S.E., and Karten, H.J., 1984b, Evolution of the amniote basal ganglia, T.I.N.S., 7:320.Google Scholar
  49. Reiner, A., 1986, Is prefrontal cortex found only in mammals? T.I.N.S., 9:298.Google Scholar
  50. Russchen, F.T., Amaral, D.G., and Price, J.L., 1985, The afferent connections of the substantia innominata in the monkey, Macaca fascicularis, J. Comp. Neurol., 242:1.PubMedCrossRefGoogle Scholar
  51. Russchen, F.T., Smeets, W.J.A.J., and Hoogland, P.V., 1987. Histochemical identification of pallidal and striatal structures in the lizard Gekko gecko. Evidence for compartmentalization, J. Comp. Neurol., (in press)Google Scholar
  52. Smeets, W.J.A.J., Hoogland, P.V., and Lohman, A.H.M., 1986a, A forebrain atlas of the lizard Gekko gecko, J. Comp. Neurol., 254:1.PubMedCrossRefGoogle Scholar
  53. Smeets, W.J.A.J., Hoogland, P.V., and Voorn, P.,1986b, The distribution of dopamine immunoreactivity in the forebrain and midbrain of the lizard Gekko gecko : An immunohistochemical study with antibodies against dopamine, J. Comp. Neurol., 253:46.PubMedCrossRefGoogle Scholar
  54. Smeets, W.J.A.J., Jonker, A.J., and Hoogland, P.V., 1987, The distribution of dopamine in the forebrain and midbrain of a turtle, Pseudemys scripta elegans, reinvestigated using antibodies against dopamine, Brain Behav. Evol., (in press).Google Scholar
  55. Ten Donkelaar, H.J., and de Boer-van Huizen, R., 1981, Basal ganglia projections to the brain stem in the lizard Varanus exanthematicus as demonstrated by retrograde transport of horseradish peroxidase, Neuroscience, 6:1567.PubMedCrossRefGoogle Scholar
  56. Voneida, T.J., and Sligar, C.M., 1979, Efferent projections of the dorsal ventricular ridge and the striatum in the tegu lizard, Tupinambis nigropunctatus, J. Comp. Neurol., 186:43.PubMedCrossRefGoogle Scholar
  57. VanderKooy, D., Koda, L.Y., McGinty, J.F., Gerfen, C.R., and Bloom, F.E., 1984, The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat, J. Comp. Neurol., 224:1.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • F. T. Russchen
    • 1
  • W. J. A. J. Smeets
    • 1
  • A. H. M. Lohman
    • 1
  1. 1.Department of AnatomyVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations