Advertisement

Spatial Organization and Information Processing in the Core of the Basal Ganglia

  • Gérard Percheron
  • Chantal François
  • Jérôme Yelnik
Part of the Advances in Behavioral Biology book series (ABBI, volume 32)

Abstract

Human pathology or experimental lesions easily disclose which “modality” of nervous activity sensory or motor pyramidal systems are dealing with. This is not the case in basal ganglia (see DeLong and Georgopoulos, 1981). Many recent studies look for the identification of substances involved in synaptic transmission. Our approach is purely morphological and introduces the study of neuronal arborizations for an analysis in terms of nervous information. Our contribution will consider the hypothesis according to which a specificity of the system of the basal ganglia could rely on a special kind of information processing done between particular sets of neurons. A previous study (Percheron et al., 1984a and b; Yelnik et al., 1984) essentially examined the potential role of the pallidum. Our aim here is to add the data from recent studies on the substantia nigra (François et al., 1984b, 1985, 1987; Yelnik et al., 1987) and to deepen the theoretical foundations of our analysis.

Keywords

Basal Ganglion Substantia Nigra Reticular Formation Dendritic Arborization Dendritic Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, G. E., DeLong, H. R., 1985, Microstimulation of the primate neostriatum. II Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties, J. Neurophysiol., 53:1417.PubMedGoogle Scholar
  2. Alexander, G. E., DeLong, M. R., and Strick, P. L., 1986, Parallel organization of functionally segregated circuits linking basal ganglia and cortex, Ann. Rev. Neurosci., 9:357.PubMedCrossRefGoogle Scholar
  3. Arikuni, T., and Kubota, K., 1986, The organization of prefronto-caudate projections and their laminar origin in the macaque monkey: a retrograde study using HRP-gel. J. Comp. Neurol., 244:492.PubMedCrossRefGoogle Scholar
  4. Avendano, C., Price, J. L., and Arnaral, D. G., 1983, Evidence for an amygdaloid projection to premotor cortex but not to motor cortex in the monkey. Brain Res., 264:117.Google Scholar
  5. Beckstead, R. M., and Frankfurter, A., 1982, The distribution and some morphological features of substantia nigra neurons that project to the thalamus, superior colliculus and pedunculopontine nucleus in the monkey, Neuroscience, 7:2377.PubMedCrossRefGoogle Scholar
  6. Carpenter, M. B., Nakano, K., Kim, R., 1975, Nigrothalamic projections in the monkey demonstrated by autoradiographic technics, J. Comp. Neurol., 165:401.CrossRefGoogle Scholar
  7. Crutcher, M. D., and DeLong, M. R., 1984, Single cell studies of the primate putamen. I Functional organization, Exp. Brain Res., 53:233.PubMedCrossRefGoogle Scholar
  8. Crutcher, M. D., and DeLong, M. R., 1984, Single cell studies of the primate putamen. II Relations to direction of movement and pattern of muscular activity, Exp. Brain Res., 53:244.PubMedCrossRefGoogle Scholar
  9. Degryse, A. D., and Colpaert, F. C, 1985, Symptoms and behavioral features induced by 1-Methyl-4-Phenyl-l,2,3,6-Tetrahydropyridine (MPTP) in an old Java monkey (Macaca cynamolgus fascicularis (Raffles)), Brain Res. Bull., 16:561.CrossRefGoogle Scholar
  10. DeLong, M. R., and Georgopoulos, A. P., 1981, Motor functions of the basal ganglia, in: “Handbook of physiology. Section I: Nervous system Vol II Motor control, Part 2,” Am. Physiol. Soc, Baltimore.Google Scholar
  11. Féger, J., and Crossman, A. R., 1984, Identification of different subpopulations of neostriatal neurons projecting to globus pallidus and substantia nigra in the monkey: a retrograde fluorescence doublelabelling study, Neurosci. Lett., 49:7.PubMedCrossRefGoogle Scholar
  12. Fodor, J. A., 1983, “The modularity of mind,” MIT Press, Cambridge.Google Scholar
  13. Fox, C. A., Hillman, D. E., Siegermund, K. A., and Sether, L. A., 1966, The primate globus pallidus and its feline and avian homologues: a Golgi and electron microscopic study, in: “Evolution of the forebrain”, R. Hassler, and H. Stephan, eds, G. Thieme, Stuttgart.Google Scholar
  14. Fox, C. A., Andrade, A.N., Lu Qui, I. J., and Rafols, J. A., 1974, The primate globus pallidus: a Golgi and electron microscopic study, J. Hirnforsch., 15:75.PubMedGoogle Scholar
  15. Fox, C. A., and Rafols J. A., 1976, The striatal efferent in the globus pallidus and in the substantia nigra, in, “The basal ganglia,” M. D. Yahr, ed., Raven Press, New York.Google Scholar
  16. François, C., Nguyen-Legros, J., and Percheron, G., 1981, Topographical and cytological localization of iron in rat and monkey brains, Brain Res., 215:317.PubMedCrossRefGoogle Scholar
  17. François, C., Percheron, G., Yelnik, J., and Heyner, S., 1984a, A Golgi analysis of the primate globus pallidus. I Inconstant processes of large neurons, other neuronal types and afferent axons, J. Comp. Neurol., 227:182.PubMedCrossRefGoogle Scholar
  18. François, C., Percheron, G., and Yelnik, J., 1934b, Localization of nigrostriatal, nigrothalamic and nigrotectal neurons in ventricular coordinates in macaques, Neuroscience, 13:61.CrossRefGoogle Scholar
  19. François, C., Percheron, G., Yelnik J., and Heyner, S., 1985, A histological atlas of the macaque (Macaca mulatta) substantia nigra in ventricular coordinates, Brain Res. Bull., 14:349.CrossRefGoogle Scholar
  20. François, C., Yelnik, J., and Percheron, G., 1987, A Golgi study of the primate substantia nigra II Spatial organization of dendritic arborizations in relation to cytoarchitectonic boundaries and to the striato-pallido-nigral bundle, J. Comp. Neurol., submitted to publication.Google Scholar
  21. Haber, S., and Elde, R., 1981, Correlation between met-enkephalin and substance P histochemistry in the primate globus pallidus, Neuroscience, 6:1291.PubMedCrossRefGoogle Scholar
  22. Harman, P. J., and Carpenter, M. B., 1950, Volumetric comparisons of the basal ganglia of various primates including man, J. Comp. Neurol., 93:127.CrossRefGoogle Scholar
  23. Inagaki, S., and Parent, A.,1935, Distribution of enkephaline- immunoreactive neurons in the forebrain and upper brainstem of the squirrel monkey, Brain Res., 359:267.CrossRefGoogle Scholar
  24. Ilinsky, I. A., Jouandet, M. L., and Goldman-Rakic, P. S., 1985, Organization of the infrathalamocortical system in the Rhesus monkey, J. Comp. Neurol., 236:315.PubMedCrossRefGoogle Scholar
  25. Jacobson, M., 1978, “Developmental neurobiology,” Plenum Press, New York.Google Scholar
  26. Johnson, T. N., and Rosvold, H. E., 1971, Topographic projection on the globus pallidus and the substantia nigra of selectively placed lesions in the precommissural caudate nucleus and putamen in the monkey, Exp. Neurol., 33:584.PubMedCrossRefGoogle Scholar
  27. Kim, R., Nakano, K, Jayaraman, A., and Carpenter, M. B., 1976, Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey, J. Comp. Neurol., 169:263.PubMedCrossRefGoogle Scholar
  28. Leontovitch, T. A., and Zhukova, G. P., 1963, The specificity of the neuronal structure and topography of the reticular formation of the brain and spinal cord of Carnivora, J. Cornp. Neurol., 121:437.Google Scholar
  29. Liles, S. L., 1985, Activity of neurons in putamen during active and passive movements of wrist, J. Neurophysiol., 53:217.PubMedGoogle Scholar
  30. Liles, S. L., and Updyke, B. V., 1985, Projection of the digit and wrist area of the precentral gyms to the putamen. Relation between topography and physiological properties of neurons in the putamen, Brain Res., 339:245.PubMedCrossRefGoogle Scholar
  31. Maioli, M. G., Squatrito, S., Battaglini, P. P., Rossi, R., and Galetti, C., 1983, Projections from the visual cortical region of the superior temporal sulcus to the striatum and claustrum in the macaque monkey, Arch. Ital. Biol., 121:259.PubMedGoogle Scholar
  32. Mannen, H., 1960, “Noyau fermé” et “noyau ouvert”, Arch. Ital. Biol., 98:333.Google Scholar
  33. Marchand, R., Poirier, L. J., and Parent, A., 1979, Cytohistochemical study of the primate basal ganglia and substantia nigra,in: “The extrapyramidal system and its disorders. Adv. in Neurol.,” L. J. Poirier, T. L. Sourkes, and P. J. Bédard, eds, Raven Press, New York.Google Scholar
  34. Meininger, V., and Baudrirnont, M., 1981, Postnatal modifications of the dendritic tree of cells in the inferior colliculus of the cat. A quantitative Golgi analysis, J. Comp. Neurol., 200:339.PubMedCrossRefGoogle Scholar
  35. Miyata, M., and Sasaki, K., 1984, Horseradish peroxidase studies on thalamic and striatal connections of the mesial part of area 6 in the monkey, Brain Res., 61:385.Google Scholar
  36. Moore, G. P., 1980, Mathematical techniques for studying information processing by the nervous system, in: “Information processing in the nervous system,” H. M. Pinsker, and W. D. Willis, eds, Raven Press, New York.Google Scholar
  37. Palm, G., 1902, “Neural assemblies. An alternative approach to artificial intelligence,” Springer, Berlin.Google Scholar
  38. Parent, A., Bouchard, C., and Smith, Y., 1984, The striatopallidal and striatonigral projections: two distinct fiber systems in primate, Brain Res., 303:385.PubMedCrossRefGoogle Scholar
  39. Parent, A., Gravel, S., and Olivier, A., 1979, The extrapyramidal and limbic systems relationship at the globus pallidus level: a comparative histochemical study in the rat, cat and monkey, in: “The extrapyramidal system and its disorders. Adv. in Neurol.,” L. J. Poirier, T. L. Sourkes, and P. J. Bcdard, eds, Raven Press, New York.Google Scholar
  40. Parent, A., Poirier, L. J., Boucher, R., and Butcher, L. L., 1977, Morphological characteristics of acetylcholinesterase containing neurons in the CNS of DFP-treated monkeys. Part 2 Diencephalic and medial telencephalic structures, J. Neurol. Sci., 32:9.PubMedCrossRefGoogle Scholar
  41. Percheron, G., 1982, Principles and methods of the graph-theoretical analysis of natural binary arborescences, J. Theoret. Biol., 99:509.CrossRefGoogle Scholar
  42. Percheron, G., 1987, Le cerveau et la pensée, La Recherche, submitted to publication.Google Scholar
  43. Percheron, G., 1984, L’utilisation de l’espace par les neurones, Invited lecture at Collège de France, Paris, may 1984.Google Scholar
  44. Percheron, G., Yelnik, J., and François, C., 1984a, A Golgi analysis of the primate globus pallidus. III Spatial organization of the striatopallidal complex, J. Comp. Neurol., 227:214.PubMedCrossRefGoogle Scholar
  45. Percheron, G., Yelnik, J., and François, C., 1984b, The primate striatopallido-nigral system: an integrative system for cortical information, in: “The basal ganglia,” J. S. McKenzie, R. E. Kemm, and L. N. Wilcock, eds, Plenum Press, New York.Google Scholar
  46. Percheron, G., Yelnik, J., and François, C., 1986a, Systems of coordinates for stereotactic surgery and cerebral cartography: advantages of ventricular systems in monkeys, J. Neurosci. Methods, 17:69.PubMedCrossRefGoogle Scholar
  47. Percheron, G., François, C., and Yelnik, J., 1986b, Relations entre les ganglions de la base et le thalamus du primate. Nouvelles données morphologiques. Nouvelles interprétations physiopathologiques, Rev. Neurol. (Paris), 142:337.Google Scholar
  48. Rakic, P., 1975, Role of cell interaction in development of dendritic patterns, in: “Physiology and pathology of dendrites,” G. W. Kreutzberg, ed., Adv. Neurol., 12:177.Google Scholar
  49. Ramon-Moliner, E., 1969, The leptodendritic neuron: its distribution and significance, Ann. N. Y. Acad. Sci., 167:65.CrossRefGoogle Scholar
  50. Ramon-Moliner, E., and Nauta, W. J. H., 1966, The isodendritic core of the brain stem, J. Comp. Neurol., 126:311.PubMedCrossRefGoogle Scholar
  51. Russchen, F. T., Bakst, I., Amaral, D. G., and Price J. L., 1985, The amygdalostriatal projections in the monkey. An anterograde tracing study, Brain Res., 329:241.PubMedCrossRefGoogle Scholar
  52. Scheibel, M. E., and Scheibel, A. B., 1968, The brain stem reticular core -an integrative matrix, in: “Systems theory and biology,” M. D. Mesarovic, ed., Springer, Berlin.Google Scholar
  53. Schell, G. R., and Strick, P. L., 1984, The origin of thalamic inputs to the arcuate premotor and supplementary motor areas, J. Neurosci., 4:539.PubMedGoogle Scholar
  54. Schröder, K. F., Hopf, A., Lange, H., Thörner, G., 1975, Morphometrischstatistiche Strukturanalysen des Striatum, Pallidum and Nucleus subthalamicus beim Menschen I Striatum, J. Hirnforsch., 16:333.PubMedGoogle Scholar
  55. Schwyn, R. C., and Fox, C. A., 1974, The primate substantia nigra: a Golgi and electron microscopic study, J. Hirnforsch., 15:95.PubMedGoogle Scholar
  56. Selemon, L. D., and Goldman-Rakic, P. S., 1985, Longitudinal topography and interdigitation of cortico-striatal projections in the rhesus monkey, J. Neurosci., 5:776.PubMedGoogle Scholar
  57. Stelmasiak, M., 1955, Quoted by S. M. Blinkov, and J. I. Glezer, 1968, “The human brain in figures and tables. A quantitative handbook,” Plenum Press, New York.Google Scholar
  58. Szabo, J., 1962, Topical distribution of the striatal efferents in the monkey, Exp. Neurol., 5:21.CrossRefGoogle Scholar
  59. Thörner, G., Lange, H., and Hopf, A., 1975, Morphometrisch-statistiche Strukturanalysen des Striatum, Pallidum and Nucleus subthalarnicus beim Menschen II Pallidum, J. Hirnforsch., 16:401.PubMedGoogle Scholar
  60. Turner, B. H., Mishkin, M., and Knapp, M., 1980, Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey, J. Comp. Neurol., 191:515.PubMedCrossRefGoogle Scholar
  61. Verhaart, W. J. C., 1950, Fiver analysis of the basal ganglia, J. Comp. Neurol., 93:425.PubMedCrossRefGoogle Scholar
  62. Von Bonin, G., and Shariff, G. A., 1951, Extrapyramidal nuclei among mammals. A quantitative study, J. Comp. Neurol., 94:427.CrossRefGoogle Scholar
  63. Yelnik, J., and Percheron, G., 1979, Subthalamic neurons in primates: a quantitative and comparative analysis, Neuroscience, 4:1717.PubMedCrossRefGoogle Scholar
  64. Yelnik, J., Percheron, G., Perbos, J., and François, C., 1981, A computeraided method for the quantitative analysis of dendritic arborizations reconstructed from serial sections, J. Neurosci. Methods, 4:347.PubMedCrossRefGoogle Scholar
  65. Yelnik, J., Percheron, G., François, C., and Burnod, Y., 1983, Principal component analysis: a suitable method for the 3-dimensional study of the shape, dimensions and orientation of dendritic arborizations, J. Neurosci. Methods, 9:115.PubMedCrossRefGoogle Scholar
  66. Yelnik, J., Percheron, G., and François, C., 1984, A Golgi analysis of the primate globus pallidus. II Quantitative morphology and spatial orientation of dendritic arborizations, J. Comp. Neurol., 227:200.PubMedCrossRefGoogle Scholar
  67. Yelnik, J., François, C., and Percheron, G., 1987, A Golgi study of the primate substantia nigra I Quantitative morphology and typology of nigral neurons, J. Comp. Neurol., submitted to publication.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Gérard Percheron
    • 1
  • Chantal François
    • 1
  • Jérôme Yelnik
    • 1
  1. 1.INSERM U3 Hôpital de la SalpêtrièreParis Cedex 13France

Personalised recommendations