Neurotransmitters in the Basal Ganglia and Motor Thalamus: Their Role for the Regulation of Muscle Tone

  • T. Klockgether
  • M. Schwarz
  • L. Turski
  • C. Ikonomidou-Turski
  • K. Ossowska
  • C. Heim
  • W. Turski
  • U. Wüllner
  • K.-H. Sontag
Part of the Advances in Behavioral Biology book series (ABBI, volume 32)


Stimulated by Ehringer and Hornykiewicz’s (1960) fundamental finding of a highly decreased dopamine content in the neostriata of Parkinsonian patients there has been increasing interest in neurotransmitter mechanisms in the basal ganglia and their role in physiological and pathological processes. Aided by the advent of new neuroanatomical and neurochemical technigues and the use of modern electrophysiological and pharmacological methods, new concepts of basal ganglia function have emerged which, although still inadaeguate, allow a better integration of the experimental and clinical data of different disciplines involved in basal ganglia research.


Basal Ganglion Substantia Nigra Globus Pallidus Tonic Firing Bilateral Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anden, N.E., and Johnels, B., 1977, Effect of local application of apomorphine to the corpus striatum and to the nucleus accumbens on the reserpine-induced rigidity in rats, Brain Res., 133:386.PubMedCrossRefGoogle Scholar
  2. Anderson, M., and Yoshida, M., 1977, Electrophysiological evidence for branching nigral projections to the thalamus and the superior colliculus, Brain Res., 137:361.PubMedCrossRefGoogle Scholar
  3. Arnt, J., 1981, Turning behaviour and catalepsy after injection of excitatory amino acids into rat substantia nigra, Neurosci. Lett., 23:337.PubMedCrossRefGoogle Scholar
  4. Arnt, J., and Scheel-Krüger, J., 1980, Intranigral GABA antagonists produce dopamine-independent biting in rats, Eur. J. Pharmacol., 62:51.PubMedCrossRefGoogle Scholar
  5. Beckstead, R.M., and Cruz, C.J., 1986, Striatal axons to the globus pallidus, entopeduncular nucleus and substantia nigra come mainly from separate cell populations in cat, Neurosci., 19:147.CrossRefGoogle Scholar
  6. Bolam, J.P., Somogyi, P., Takagi, H., Fodor I., and Smith, A.D., 1983, Localization of substance P-like immunoreactivity in neurons and nerve terminals in the neostriatum of the rat: a correlated light and electron microscopic study, J. Neurocytol., 12:325.PubMedCrossRefGoogle Scholar
  7. Bolam, J.P., Wainer P.W., and Smith, A.D., 1984, Characterization of cholinergic neurons in the rt neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy, Neurosci., 12:711 .CrossRefGoogle Scholar
  8. Brownstein, M.J., Mroz, E.A., Tappaz M.L., and Leeman, S.E., 1977, On the origin of substance P and glutamic acid decarboxylase (GAD) in the substantia nigra, Brain Res., 135:315.PubMedCrossRefGoogle Scholar
  9. Bruyn, G.W., 1968, Huntington’s chorea historical, clinical and laboratory synopsis, in: Handbook of Clinical Neurology 6, P.J. Vinken and G.W. Bruyn, eds., Elsevier North-Holland, Amsterdam.Google Scholar
  10. Carpenter, M.B., 1981, Anatomy of the corpus striatum and brain stem integrating systems, In: Handbook of Physiology, Section I, Vol. II, J.M. Brookhart and V.B. Mountcastle, eds., American Physiol. Soc., Bethesda, Maryland.Google Scholar
  11. Cools, A.R., Jaspers, R., Kolasiewicz, W., Sontag K.-H., and Wolfarth, S., 1983, Substantia nigra is a station that not only transmits but also transforms incoming signals for its behavioural expression: striatal dopamine and GABA-mediated responses of pars reticulata neurons, Behav. Brain Res., 7:39.PubMedCrossRefGoogle Scholar
  12. Coyle, J.T., and Schwarcz, R., 1976, Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature, 263:244.PubMedCrossRefGoogle Scholar
  13. Coyle, J.T., Schwarcz, R., Bennett J.P., and Caupochiaro, P., 1977, Clinical, neuropathologic and pharmacologic aspects of Huntington’s disease: correlates with a new animal model, Prog. Neuro-Psychopharmacol., 1:13.CrossRefGoogle Scholar
  14. DeLong, M.R., and Georgopoulos, A.P., 1981, Motor functions of the basal ganglia. In: Handbook of Physiology, Section 1, Vol. II, J.M. Brookhart, and V.B. Mountcastle, eds., American Physiol. Soc, Bethesda, Maryland.Google Scholar
  15. Deniau, J.M., Hammond, C., Riszk A., and Feger, J., 1978, E1ectrophysiological properties of identified output neurons of the rat substantia nigra (pars compacta and pars reticulata): evidence for the existence of branched neurons, Exo.Brain Res., 32:409.Google Scholar
  16. Deniau, J.M., and Chevalier, G., 1985, Disinhibition as a basic process in the expression of striatal functions. II. The striato-nigral influence on thalmocortical cells of the ventromedial thalamic nucleus, Brain Res., 334:227.PubMedCrossRefGoogle Scholar
  17. Di Chiara, G., and Morelli, M., 1984, Output pathways mediating basal ganglia function, in: The Basal Ganglia, Structure and Function, J.S. Mc Kenzie, R.E. Kemm, and L.N. Wilcock, eds., Plenum Press, New York, London.Google Scholar
  18. Di Chiara, G., Morelli, M., Porceddu, M.L., and Gessa, G.L., 1979, Role of thalamic γ-aminobutyrate in motor functions: catalepsy and ipsiversive turning after intrathalamic muscimol, Neurosci., 4:1453.CrossRefGoogle Scholar
  19. Dickinson, S.L., and Slater, P., 1982, Effects of striatal and pallidal lesions and intrapallidal drugs on tremorine induced rigidity in the rat, Neurosci. Lett., 29:163.PubMedCrossRefGoogle Scholar
  20. Di Figlia, M., Aronin N., and Martin, J.B., 1982, Light and electron microscopic localization of immunoreactive leu-enkephalin in the monkey basal ganglia, J. Neurosci., 2:303.Google Scholar
  21. Donoghue, J.P., and Herkenham, M., 1986, Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat, Brain Res., 365:397.PubMedCrossRefGoogle Scholar
  22. Ehringer, H., and Hornykiewicz, O., 1960, Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems, Klin. Wochenschr., 38:1236.PubMedCrossRefGoogle Scholar
  23. Ellenbroek, B., Klockgether, T., Turski L., and Schwarz, M., 1986, Distinct sites of functional interaction between dopamine, acetylcholine and GABA within the neostriatum: An electromyographic study in rats, Neurosci., 17:79.CrossRefGoogle Scholar
  24. Ellenbroek, B., Schwarz, M., Sontag K.-H., and Cools, A., 1984, The role of the colliculus superior in the expression of muscular rigidity, Eur. J. Pharmacol., 104:117.CrossRefGoogle Scholar
  25. Ellenbroek, B., Schwarz, M., Sontag K.-H., and Cools, A., 1985 a, The importance of the striato-nigro-collicular pathway in the expression of haloperidol induced tonic EMG activity, Neurosci. Lett., 54:189.PubMedCrossRefGoogle Scholar
  26. Ellenbroek, B., Schwarz, M., Sontag, K.-H., Jaspers R., and Cools, A., 1985 b, Muscular rigidity and delineation of a dopamine specific neostriatal subregion: Tonic EMG activity in rats, Brain Res., 345:132.PubMedCrossRefGoogle Scholar
  27. Fibiger, H.C., 1982, The organization and some projections of cholinergic neurons of the mammalian forebrain, Brain Res. Rev., 4:327.CrossRefGoogle Scholar
  28. Filion, M., and Hebert, R., 1983, Redundancy in ascending and descending pathways mediating head turning elicited by entopenduncular stimulation in the cat, Neurosci., 10, 1:169.CrossRefGoogle Scholar
  29. Filion, M., Tremblay, L., Dipaolo, T., and Bedard, P.J., 1986, Effects of apomorphine on spontaneous activity of globus pallidus neurons in monkeys rendered Parkinsonian by MPTP, Abstracts 2nd Triennial Symposium IBAGS, Victoria, Canada, July 21 – 23.Google Scholar
  30. Fonnum, F., Storm-Mathisen J., and Divac, I., 1981, Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain, Neurosci., 6:863.CrossRefGoogle Scholar
  31. Gale, K., and Casu, M., 1981, Dynamic utilization of GABA in substantia nigra. Regulation by dopamine and GABA in the striatum and its clinical and behavioural implications, Mol. Cell Biochem., 39:369.PubMedCrossRefGoogle Scholar
  32. Golembiowska-Nikitin, K., Sontag, K.-H., and Osborne, N.N., 1981, 3H-spiroperidol binding to striatal membranes of mutant Han-Wistar rats which exhibit spastic paresis, Experientia 37:490.CrossRefGoogle Scholar
  33. Graybiel, A.M., and Ragsdale, C.W., 1979, Fiber connections of the basal ganglia, in: Development and Chemical Specifity of Neurons, M. Cuenod, G.W. Kreutzberg, and F.E. Bloom, eds., Elsevier North-Holland, Amsterdam.Google Scholar
  34. Groves, P.M., 1984, A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement, Brain Res. Rev., 5:109.CrossRefGoogle Scholar
  35. Havemann, U., Turski, L., and Kuschinsky, K., 1982, Role of GABAergic mechanisms in the substantia nigra pars reticulata in modulating morphine-induced muscular rigidity in rats, Neurosci. Lett., 31:25.PubMedCrossRefGoogle Scholar
  36. Havemann, U., Turski, L., Schwarz, M., and Kuschinsky, K., 1983, Nigral GABAergic mechanisms and EMG acticity in rats: differences between pars reticulata and pars compacta, Eur. J. Pharmacol., 92:49.PubMedCrossRefGoogle Scholar
  37. Heim, C., Schwarz, M., Klockgether, T., Jaspers, R., Cools A.R., and Sontag, K.-H., 1986, GABAergic neurotransmission within the reticular part of the substantia nigra (SNR): role for switching motor patterns and performance of movements, Exp. Brain Res., 63:375.PubMedCrossRefGoogle Scholar
  38. Herkenham, M., 1979, The afferent and efferent connections of the ventromedial thalamic nucleus in the rat, J. Comp. Neurol., 183:487.PubMedCrossRefGoogle Scholar
  39. Hikosaka, O., and Wurtz, R.H., 1983, Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccadic responses, J. Neurophysiol., 49:1268.PubMedGoogle Scholar
  40. Imperato, A., and Di Chiara, G., 1981, Behavioural effects of GABA-agonists infused in the mesencephalic reticular formation-deep layers of superior colliculus, Brain Res., 224:185.PubMedCrossRefGoogle Scholar
  41. Jurna, I., and Lanzer, G., 1969, Inhibition of the effect of reserpine on motor control by drugs which influence reserpine rigidity, Naunyn-Schmiedebergs’ Arch. Pharmacol., 262: 309.Google Scholar
  42. Jurna, I., Ruzdic, N., Nell T., and Grossmann, W., 1972, The effect of α -methy1-p-tyrosine and substantia nigra lesions on spinal motor activity in the rat. Eur. J. Pharmacol. 20:341.PubMedCrossRefGoogle Scholar
  43. Jurna, I., Brenner M., and Drum, P., 1978, Abolition of spinal motor disturbance by injections of dopamine receptor agonists, atropine and GABA into the caudate nucleus Neuropharmacol., 17:35.Google Scholar
  44. Kanazawa, I., Tanaka Y., and Fumiaki, C., 1986, ‘Choreic’ movement induced by unilateral kainate lesion of the striatum and L-DOPA administration in monkey, Neurosci. Lett., 71:241.PubMedCrossRefGoogle Scholar
  45. Klockgether, T., Schwarz M., and Sontag, K.-H., 1979, Inhibition of gastrocnemius-soleus (GS) monosynaptic reflex in cats with 6-hydroxydopamine (6-OHDA)-lesion of substantia nigra (SN) Pflügers Arch., 379:R 45.Google Scholar
  46. Klockgether, T., Schwarz, M., Turski L., and Sontag, K.-H., 1986 a, The rat ventromedial thalamic nucleus and motor control: Role of N-methyl-Daspartate-mediated excitation, GABAergic inhibition, and muscarinic transmission, J. Neurosci., 6:1702.PubMedGoogle Scholar
  47. Klockgether, T., Schwarz, M., Turski, L., Wolfarth S., and Sontag, K.-H., 1985 Rigidity and catalepsy after injectioas of muscimol into the ventromedial thalamic nucleus: An electromyographic study in the rat, Exp. Brain Res., 58:559.PubMedCrossRefGoogle Scholar
  48. Klockgether, T., Turski, L., Schwarz M., and Sontag, K.-H., 1986 b, Motor actions of excitatory amino acids and their antagonists within the rat ventromedial thalamic nucleus, Brain Res., 399:1.PubMedCrossRefGoogle Scholar
  49. Klockgether, T., Turski, L., Schwarz M., and Sontag, K.-H., 1987, Behavioural effects of excitatory amino acid antagonists within the rat ventromedial thalamic nucleus, in: Excitatory Amino Acid Transmission, T.P. Hicks, D. Lodge, and H. McLennan, eds., Alan Liss, New York.Google Scholar
  50. König, J.F.R., and Klippel, R.A., 1963, The Rat Brain. A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brain Stem, Williams and Wilkins, Baltimore.Google Scholar
  51. Künzle, N., 1975, Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia: an autoradiographic study in Macaca fascucularis, Brain Res., 88:195.PubMedCrossRefGoogle Scholar
  52. Langston, J.W., 1985, MPTP and Parkinsons’s disease, TINS 2:79.Google Scholar
  53. Miller, W., and DeLong, M.R., 1986, Changes in neuronal activity in the monkey globus pallidus after MPTP, Abstracts 2nd Triennial Symposium IBAGS, Victoria, Canada, July 21–23.Google Scholar
  54. Mitchell, I.J., Cross, A.J., Sambrook M.A., and Crossman, A.R., 1986, Neural mechanisms mediating 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the monkey: relative contributions of the striatopallidal and striatonigral pathways as suggested by 2-deoxyglucose uptake, Neurosci. Lett., 63:61.PubMedCrossRefGoogle Scholar
  55. Nauta, W.J.H., and Domesick, V.B., 1984, Afferent and efferent relationship of the basal ganglia, In: Functions of the Basal Ganglia, D. Evered, and M. O’Connor, eds., Pitman, London.Google Scholar
  56. Neafsey, E.J., Hull C.D., and Buchwald, N.A., 1978, Unit activity in the basal ganglia and thalamus, EEG Clin. Neurophysiol., 44:714.CrossRefGoogle Scholar
  57. Osborne, N.N., Coelle, E.-F., Neuhoff, V., and Sontag, K.-H., 1977, Mutant spastic Han-Wistar rats: biochemical abnormalities in their striata, Neurosci. Lett., 6:251.PubMedCrossRefGoogle Scholar
  58. Ossowska, K., Wardas, J., Warchal, D., Kolasiesicz, W., and Wolfarth, S., 1986, GABA mechanisms of ventromedial thalamic nucleus in morphineinduced muscle rigidity, Eur. J. Pharmacol., 129:245.PubMedCrossRefGoogle Scholar
  59. Ossowska, K., Wedzony K., and Wolfarth, S., 1984, The role of the GABA mechanisms of the globus oallidus in mediating catalepsy, stereotypy and locomotor activity, Pharmacol. Biochem. Behav. 21:825.PubMedCrossRefGoogle Scholar
  60. Patino, P., and Garcia-Munoz, M., 1985, Electrophysiological thalamic responses evoked by dopamine-receptor stimulation into the striatum, Brain Res., 361:1.PubMedCrossRefGoogle Scholar
  61. Parent, A., Bouchard B., and Smith, Y., 1984, The striatopallidal and striatonigral projections: two distinct fiber systems in primate, Brain Res., 303:385.PubMedCrossRefGoogle Scholar
  62. Pittermann, W., Sontag, K.-H., Wand, P., Rapp P., and Deerberg, F., 1976, Spontaneous occurrence of spastic paresis in Han-Wistar rats, Neurosci. Lett., 2:45.PubMedCrossRefGoogle Scholar
  63. Pycock, C.J., Horton R.W., and Marsden, C.D., 1976, The behavioural effects of manipulating GABA funcion in the globus pallidus, Brain Res., 116: 353.PubMedCrossRefGoogle Scholar
  64. Pycock, C.J., and Dawbarn, D., 1980, Acute motor effects of N-methyl-D-aspartic acid and kainic acid applied focally to mesencephalic dopamine cell body regions in the rat, Neurosci. Lett., 18:85.PubMedCrossRefGoogle Scholar
  65. Reavill, C., Jenner, P., and Marsden, C.D., 1984, γ-Aminobutyric acid and basal ganglia outflow pathways, in: Functions of the Basal Ganglia, D. Evered, and M. O’Connor, Pitman, London.Google Scholar
  66. Ribak, C.E., Vaughn, J.E., and Roberts, E., The GABA neurons and their axon terminals in the rat corpus striatum as demonstrated by GAD immunocytochemistry. J. Comp. Neurol., 187:261.Google Scholar
  67. Ribak, C.E., Vaughn, J.E., and Roberts, E., 1980, GABAergic terminals decrease in substantia nigra following hemitranssections of the striatonigral and pallidonigral pathways, Brain Res.192:413.PubMedCrossRefGoogle Scholar
  68. Rouzaire-Dubois, B., Hammond, C., Yelnik, J., and Feger, J., 1984, Anatomy and neurophysiology of the subthalamic efferent neurons, in: The Basal Ganglia, Structure and Function, J.S. McKenzie, R.E. Kemm, and L.N. Wilcock, eds., Plenum Press, New York.Google Scholar
  69. Scheel-Krüger, J., 1986, Dopamine-GABA interactions: evidence that GABA transmits, modulates and mediates dopaminergic functions in the basal ganglia and the limbic system, Acta neurol. scand., 73: suppl. 107.Google Scholar
  70. Scheel-Krüger, J., and Magelund, G., 1981, GABA in the entopeduncular nucleus and the subthalamic nucleus participates in mediating dopaminergic striatal output functions, Life Sci., 29:1555.PubMedCrossRefGoogle Scholar
  71. Schultz, W., Ruffieux A., and Aebischer, P., 1983, The activity of pars compacta neurons of the monkey substantia nigra in relation to motor activation, Exp. Brain Res., 51:377.CrossRefGoogle Scholar
  72. Schwarcz, R., Foster, A.C., French, E.D., Whetsell, W.O., and Köhler, C., 1984, II. Excitotoxic models for neurodegenerative disorders, Life Sci., 35:19.PubMedCrossRefGoogle Scholar
  73. Schwarz, M., Ikonomidou, C., Klockgether, T., Turski, L., Ellenbroek B., and Sontag, K.-H., 1986, The role of striatal cholinergic mechanisms for the development of limb rigidity: An electromyographic study in rats, Brain Res., 373:365.PubMedCrossRefGoogle Scholar
  74. Schwarz, M., Löscher, W., Turski L., and Sontag, K.-H., 1985, Disturbed GABAergic transmission in mutant Han-Wistar rats: Further evidence for basal ganglia dysfunction, Brain Res., 347:258.PubMedCrossRefGoogle Scholar
  75. Schwarz, M., Sontag K.-H., and Wand, P., 1984 a, Sensory-motor processing in substantia nigra pars reticulata in conscious cats, J. Physiol. (Lond.), 347:129.Google Scholar
  76. Schwarz, M., Sontag K.-H., and Wand, P., 1984 b, Non-dopaminergic neurones of the reticular part of substantia nigra can gate static fusimotor action onto flexors in cat, J. Physiol. (Lond.), 354:333.Google Scholar
  77. Sontag, K.-H., Heim, C., Schwarz, M., Jaspers, R., Cools A.R., and Wand, P., 1984, Conseguences of disturbed GABA-ergic transmission in substantia nigra pars reticulata in freely moving cats on their motor behaviour and in anaesthetized cats on their spinal motor elements, in: The Basal Ganglia, Structure and Function, J.S. Mc Kenzie, R.E. Kemm, and L.N. Wilcock, eds., Plenum Press, New York, London.Google Scholar
  78. Spokes, E.G.S., 1980, Neurochemical alterations in Huntington’s disease. A study of post-mortem brain tissue, Brain, 103:179.PubMedCrossRefGoogle Scholar
  79. Stadler, H., Lloyd, K.G., Gadea-Ciria M., and Bartholini, G., 1973, Enhanced acetylcholine release by chlorpromazine and its reversal by apomorphine, Brain Res., 55:476.PubMedCrossRefGoogle Scholar
  80. Starr, M.S., and Summerhayes, M., Role of the ventromedial nucleus of the thalamus in motor behaviour. I. Effects of focal injections of drugs. Neurosci., 10:1157.Google Scholar
  81. Trabucchi, M., Cheney, D.L., Racagni, G., and Costa, E., 1975, ‘In vitro’ inhibition of striatal acetylcholine turnover by L-DOPA, apomorphine and (+)-amphetamine, Brain Res., 85:130.CrossRefGoogle Scholar
  82. Turski, L., Havemann, U., and Kuschinsky, K., 1983, The role of substantia nigra in motility of the rat, Neuropharmacol., 22:1039.CrossRefGoogle Scholar
  83. Turski, L., Havemann, U., and Kuschinsky, K., 1984 a, GABAergic mechanisms in mediating muscular rigidity, catalepsy and postural asymmetry in rats. Differences between dorsal and ventral striatum, Brain Res., 322:49.PubMedCrossRefGoogle Scholar
  84. Turski, L., Havemann, U., and Kuschinsky, K., 1984 b, Role of muscarinic cholinergic mechanisms in the substantia nigra pars reticulata in mediating muscular rigidity in rats, Naunyn-Schmiedeberg’s Arch. Pharmacol., 327:14.CrossRefGoogle Scholar
  85. Turski, L., Havemann, U., Schwarz, M., and Kuschinsky K., 1982, Disinhibition of nigral GABA output neurons mediates muscular rigidity elicited by striatal opioid receptor stimulation, Life Sci., 31:2327.PubMedCrossRefGoogle Scholar
  86. Turski, L., Klockgether, T., Turski, W.A., Schwarz, M., and Sontag, K.-H., 1987, Substantia nigra and motor control in the rat: Effects of intranigral-kainate and -D-glutamylaminomethylsulphonate on motility,Brain Res., in press.Google Scholar
  87. Wolfarth, S., Kolasiewicz W., and Ossowska, K., 1986, Thalamus as a relay station for catalepsy and rigidity, Behav. Brain Res., 18:261.CrossRefGoogle Scholar
  88. Wolfarth, S., Kolasiewicz, W., and Sontag, K.-H., 1981, The effects of muscimol and Picrotoxin injections into the cat substantia nigra, Naunyn-Schmiedeberg’s Arch. Pharmacol., 317:54.Google Scholar
  89. Wolfarth, S., Wand P., and Sontag, K.-H., 1979, The effects of intranigral injections of Picrotoxin and carbachol in cats with a lesined nigrostriatal pathway, Neurosci. Lett., 11:197.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • T. Klockgether
    • 1
  • M. Schwarz
    • 1
  • L. Turski
    • 1
  • C. Ikonomidou-Turski
    • 1
  • K. Ossowska
    • 1
    • 2
  • C. Heim
    • 1
  • W. Turski
    • 1
  • U. Wüllner
    • 1
  • K.-H. Sontag
    • 1
  1. 1.Max-Planck-Institute for Experimental MedicineGöttingenGermany
  2. 2.Institute of PharmacologyPolish Academy of SciencesKrakowPoland

Personalised recommendations