Modulation of Striatal Dopamine System by Thyrotropin-Releasing Hormone and Cyclo(His-Pro)

  • Chandan Prasad
Conference paper
Part of the Advances in Behavioral Biology book series (ABBI, volume 32)


Until the late 1950s, dopamine (DA) was believed to serve merely as a precursor in the synthesis of norepinephrine. Montagu (1957) and Weil-Ma l herbe et al. (1957) were the first to present evidence that DA is a normal constituent of the mammalian brain. The observation that in most species DA accounted for as much as 50 per cent of the total brain catecholamine (Schumann et al., 1959; Carlsson et al., 1958) did not support the then-prevalent notion that DA is exclusively a precursor of brain norepinephrine. Soon after, Bertler et al. (1959) and Carlsson (1959) presented their decisive studies showing uneven regional distribution of DA and norepinephrine in the mammalian brain. These and the other studies that followed led to the conclusion that DA might serve as a neurotransmitter in brain.


Nucleus Accumbens Differential Pulse Voltammetry Stereotypic Behavior Prolactin Secretion Dopaminergic Mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Algeri, S., Calderini, G., Consolazione, A., and Garattini, S., 1977, The effect of met-enkephalin and D-Ala-Met-enkephalinamide on the concentration of dopamine metabolites in rat striatum, Eur. J. Pharmacol., 45:207.PubMedCrossRefGoogle Scholar
  2. Bassiri, R.M., and Utiger, R.D., 1972, The preparation and specificity of antibody to TRH, Endocrinol., 90:722.CrossRefGoogle Scholar
  3. Battaini, F., and Peterkofsky, A., 1980, Histidyl-Proline Diketopiperazine: an endogenous brain peptide that inhibits Na+/K+ATPase, Biochem. Biophys. Res. Commun., 94:240.PubMedCrossRefGoogle Scholar
  4. Bauer, K., Graff, K.J., Faivre-Bauman, A., Beier, S., Tixier-vidal, A., and Kleinhauf, H., 1978, Inhibition of prolactin secretion by histidyl-proline diketopiperazine, Nature, 274:174.PubMedCrossRefGoogle Scholar
  5. Bedard, P.J., Malouin, F., Dipaolo, T., and Labrie, F., 1982, Estradiol, TRH and striatal dopaminergic mechanisms, Prog. Neuro-Psychopharmacol. & Biol. Psychiat., 6:555.CrossRefGoogle Scholar
  6. Bertler, A., and Rosengren, E., 1959, Occurrence and distribution of dopamine in brain and other tissues, Experientia, 15:10.PubMedCrossRefGoogle Scholar
  7. Boler, J., Enzmann, F., Folkers, K., Bowers, C.Y., and Schally, A.V., 1969, The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyroglutamyl-histidyl-prolineamide, Biochem. Biophys, Res. Commun., 37:705.CrossRefGoogle Scholar
  8. Brabant, G., Wicking, E.J., and Neischlag, E., 1981, The TRH-metabolite histidyl-proline-diketopiperazine (DKP) inhibits prolactin secretion in male rhesus monkeys, Acta Endocrinol., 98:189.PubMedGoogle Scholar
  9. Browstein, M.J., Palkovits, M., Saavedra, J.M., Bassiri, R.M., and Utiger, R.D., 1974, TRH in specific nuclei of rat brain, Science, 185:267.CrossRefGoogle Scholar
  10. Browstein, M.J., 1980, Peptidergic pathways in the central nervous system, Proc. Roy. Society, 210:79.CrossRefGoogle Scholar
  11. Burgus, R., Dunn, T.F., Desiderio, D. and Guillemin, R., 1969, Structure moleculaire de facteur hypothalamique hypophysiotrope TRF d. origine ovine: mise en evidence par spectrometric de masse de la sequence PCA-His-ProNH2, C.R. Hebd. Seanc. Acad. Sci. Paris, 269:1870.Google Scholar
  12. Carlsson, A., Lindqvist, M., Magnusson, T., and Waldeck, B., 1958, On the presence of 3-hydroxytryptamine in brain, Science, 127:471.PubMedCrossRefGoogle Scholar
  13. Carlsson, A., 1959, The occurrence, distribution and physiological role of catecholamines in the nervous system, Pharmacol. Rev., 11:490.PubMedGoogle Scholar
  14. Crespi, F., Keane, P.E., and Morre, M., 1986, In vivo evaluation by differential pulse voltammetry of the effect of TRH on dopaminergic and serotoninergic synaptic activity in the striatum and nucleus accumbens of the rat, Exp. Brain Res.,62:329.PubMedCrossRefGoogle Scholar
  15. Emson, P.C., 1983, Chemical Neuroanatomy, Raven Press, N.Y.Google Scholar
  16. Emson, P.C., Bennett, G.W., and Rossor, M.N., 1981, The distribution and characterization of TRH in the human brain, Neuropeptides, 2:115.CrossRefGoogle Scholar
  17. Fukuda, N., Miyamoto, M., Narumi, S., Nagai, Y., Shima, T., and Nagawa, Y., 1979, TRH: enhancement of dopamine dependent circling behavior and its own circling-inducing effect in unilateral striatal lesioned animals, Folia Pharmacol. Jpn, 75:251.CrossRefGoogle Scholar
  18. Garcia-Sevilla, J.A., Magnusson, T., and Carlsson, A., 1978a, Effect of intracerebroventricularly administered somatostatin on brain monoamine turnover, Brain Res., 155:159.PubMedCrossRefGoogle Scholar
  19. Garcia-Sevilla, J.A., Magnusson, T., Carlsson, A., Leban, J., and Folkers, K., 1978b, Neurotensin and its amide analogue [Gln4-neurotensin: effects on brain monoamine turnover, N-S Arch. Pharmacol., 305:205.CrossRefGoogle Scholar
  20. Gaujet, M.A., Simon, P., Chermat, R., and Boissier, J.R., 1975, Profil de la TRH en psychopharmacologie experimentale, Psychopharmacologia, 45:87.CrossRefGoogle Scholar
  21. Graybiel, A.M., 1984, Neurochemically specified subsystems in the basal ganglia, In: “Functions of the Basal Ganglia,” Ciba Foundation Symposium #107, Pitman Publ. Ltd., London.Google Scholar
  22. Hashimoto, T., Fukuda, N., Saji, Y., and Nagawa, Y., 1983, Effects on TRH and an analog, DN-1417 on the activities of single neurons in the nucleus accumbens, cerebral cortex and caudate-putamen of rats, Kurume Med. J., 30:S19.PubMedCrossRefGoogle Scholar
  23. Havlicek, V., Rezek, M., and Friesen, H., 1976, Somatostatin and TRH: central effect on sleep and motor system, Pharmacol. Biochem. Behav.], 4:455.PubMedCrossRefGoogle Scholar
  24. Heal, D.J., and Green, A.R., 1979, Administration of TRH to rats releases dopamine in n. accumbens but not n. caudatus, Neuropharmacol., 18:23.CrossRefGoogle Scholar
  25. Hornykiewicz, O., 1966, Dopamine and brain function, Pharmacol. Rev., 18:925.PubMedGoogle Scholar
  26. Horst, W.D., and Spirt, N., 1974, A possible mechanism for the antidepressant activity of TRH, Life Sci., 15:1073.PubMedCrossRefGoogle Scholar
  27. Jackson, I.M.D., Saperstein, R., and Reichlin, S., 1977, TRH in pineal and hypothalamus of the frog: efffect of season and illumination, Endocrinol., 100:97.CrossRefGoogle Scholar
  28. Jacobs, J.J., Prasad, C., and Wilber, J.F., 1982, Cyclo (H i s-Pro): Mapping hypothalamic sites for its hypothermic action, Brain Res., 250:205.PubMedCrossRefGoogle Scholar
  29. Kandarakis, E.D., Iriuchijima, T., Prasad, C., and Wilber, J.F., 1985, Distribution and characterization of cyclo (His-Pro)-like immunoreactivity in the human gastrointestinal tract, Neuropeptides, 6:21.CrossRefGoogle Scholar
  30. Keller, H.H., Bartholini, G., and Pletscher, A., 1974, Enhancement of cerebral noradrenaline turnover by TRH, Nature, 248:528.PubMedCrossRefGoogle Scholar
  31. Kerwin, R.W., and Pycock, C.J., 1979, TRH stimulates release of [3H-]-Dopamine from slices of rat nucleus accumbens in vitro, Br. J. Pharmacol., 67:323.PubMedGoogle Scholar
  32. Kito, S., Shimoyama, M., and Arakawa, R., 1986, Effect of neurotransmitters or drugs on the in vivo release of dopamine and its metabolites, Japan. J. Pharmacol., 40:57.CrossRefGoogle Scholar
  33. Kubek, M.J., Lorincz, M.A., and Wilber, J.F., 1977, The identification of TRH in hypothalamic and extrahypothalamic loci of the human nervous system, Brain Res., 126:196.PubMedCrossRefGoogle Scholar
  34. Lechan, R., and Jackson, I.M.D., 1985, TRH but not histidyl-proline diketopiperazine is depleted from rat spinal cord following 5,7-dihydroxytryptamine treatment, Brain Res., 326:152.PubMedCrossRefGoogle Scholar
  35. Leung, Y., Guansing, A.R., Ajlouni, K., Hagen, T.C., Rosenfeld, P.S., and Barboriak, J., 1975, The effect of hypoglycemia on hypothalamic TRH in the rat, Endocrinol., 97:380.CrossRefGoogle Scholar
  36. Lin, M.T., Chan, H.K., Chen, C.F., and Teh, G.W., 1983, Involvment of both opiate and catecholaminergic receptors in the behavioral excitation provoked by TRH: comparison with amphetamine, Neuropharmocology, 22:463.CrossRefGoogle Scholar
  37. Lindvall, O., and Bjorklund, A., 1978, Anatomy of the dopaminergic neuron systems in the rat brain, In: “Advances in Biochemical psychopharmacology, Vol. 19”, P.J. Roberts, ed., Raven Press, N.Y. Lloyd, K.G., 1978, Neurotransmitter interactions related to central dopamine neurones, In : “Essays in Neurochemistry and Neurophamacology, Vol. 3”, M.B.H. Youdim, W. Lovenberg, D.F. Sharman, J.R. Lagnado, eds., John Wiley and Sons, Chichester.Google Scholar
  38. Lloyd, K.G., 1978, Neurotransmitter interactions related to central dopamine neurones, In : “Essays in Neurochemistry and Neurophamacology, Vol. 3”, M.B.H. Youdim, W. Lovenberg, D.F. Sharman, J.R. Lagnado, eds., John Wiley and Sons, Chichester.Google Scholar
  39. Malthe-Sorenssen, D., Cheney, D.L., Costa, E., and Wood, P.L., 1978, Modulaiton of the turnover rate of acetylcholine in rat brain by intraventricular injections of TRH, somatostatin, Neurostensin and angiotensin II, J. Neurochem., 31:685.PubMedCrossRefGoogle Scholar
  40. Marek, K., and Haubrich, D.R., 1977, TRH-increased catabolism of cateacholamines in brains of thyroidectomized rats, Biochem. Pharmacol., 26:1817.PubMedCrossRefGoogle Scholar
  41. Melmed, S., Carlson, H.E., and Hershman, J.M., 1982, Histidyl-Proline Diketopiperazine suppresses prolactin secretion in human pituitary tumor cell cultures, Clinical Endocrinol., 16:97.CrossRefGoogle Scholar
  42. Miyamoto, M., and Nagawa, Y., 1977, Mesolimbic involvement in the locomotor stimulant action of TRH in rats, Eur. J. Pharmacol., 44:143.PubMedCrossRefGoogle Scholar
  43. Miyamoto, M., Narumi, S., Nagai, Y., Shima, T., and Nagawa, Y., 1979, TRH: hyperactivity and mesolimbic dopamine system in rats, Jap. J. Pharmacol., 29:335.PubMedCrossRefGoogle Scholar
  44. Montagu, K.A., 1957, Catechol compounds in rat tissues and in brains of different animals, Nature, 180:244.PubMedCrossRefGoogle Scholar
  45. Moore, K.E., 1978, Amphetamines: biochemical and behavioral actions in animals, In: “Handbook of Psychopharmacology, Vol. 11”, L.L. Iversen, S.D. Iversen, and S.H. Snyder, Eds., Plenum Press, N.Y.Google Scholar
  46. Moore, K.E., and Kelly, P.H., 1978, Biochemical pharmacology of mesolimbic and mesocortical dopaminergic neurons, In: “Psychopharmacology: A Generation of Progress”, M.A. Lipton, H. DiMascio, and K.F. Killam, Eds., Raven Press, N.Y.Google Scholar
  47. Mori, M., Prasad, C., and Wilber, J.F., 1981, Specific radioimmunoassay of cyclo (His-Pro), a biologically active metabolite of TRH, Endocrinology, 108:1995.PubMedCrossRefGoogle Scholar
  48. Mori, M., Jayaraman, A., Prasad, C., Pegues, J., and Wilber, J.F., 1982a, Distribution of cyclo (His-Pro) and TRH in the primate central nervous system, Brain Res., 245:183.PubMedCrossRefGoogle Scholar
  49. Mori, M., Prasad, C. and Wilber, J.F., 1982b, Regional dissociation of histidyl-prolone diketopiperazine and TRH in the rat brain, Brain Res., 231:451.PubMedCrossRefGoogle Scholar
  50. Mori, M., Mallik, T., Prasad, C., and Wilber, J.F., 1982c, Cyclo(His-Pro) : Measurement by RIA in human blood in normal and in patients with hyper and hypothyroidism, Biochem. Biophys. Res. Commun., 109:541.PubMedCrossRefGoogle Scholar
  51. Mori, M., Pegues, J., Prasad, C., Edwards, R.M., and Wilber, J.F., 1982d, Distribution and characterization of cyclo (His-Pro)- Iike immunoreactivity in the rat gastrointestinal tract, Biochem. Biophys. Res. Commun., 109:982.PubMedCrossRefGoogle Scholar
  52. Mori, M., Prasad, C., and Wilber, J.F., 1982e, Chronic alcohol consumption increases cyclo (His-Pro)-like immunoreactivity in the rat brain, J. Neurochem., 38:1785.PubMedCrossRefGoogle Scholar
  53. Mori, M., Pegues, J., Prasad, C., Wilber, J., Peterson, J., and Githens, S., 1983e, Cyclo (His-Pro) : Identification and characterization in rat pancreatic islets, Biochem. Biophys. Res. Commun., 115:281.PubMedCrossRefGoogle Scholar
  54. Mori, M., Prasad, C., Wilbr, J.F., and Nakamoto, T., 1983b, Proteinenergy malnutrition alters brain TRH and cyclo (His-Pro) in the neonatal rat, Neurosci. Lett., 43:241.PubMedCrossRefGoogle Scholar
  55. Mori, M., Pegues, J., Prasad, C., and Wilber, J.F., 1983c, Fasting and feeding-associated changes in cyclo (His-Pro)-1ike immunoreactivity in the rat brain, Brain Res., 268:181.PubMedCrossRefGoogle Scholar
  56. Nagai, Y., Narumi, S., Nagawa, Y., Sakurada, O., Ueno, H., and Ishii, S., 1980, Effect of TRH on local cerebal glucose utilization: measurement by the autoradiographic 2-deoxyglucose method in conscious and phentobarbitalized rats, J. Neurochem., 35:963.PubMedCrossRefGoogle Scholar
  57. Nakamura, J., Uchimura, N., Yamada, S., Tsutsumi, T., Ishibashi, K., Kojima, H., and Inanaga, K., 1983, Effects of a TRH analog (DN-1417) and TRH-T on the electroconvulsive threshold, Kurume Medical J., 30 Suppl .:S56.Google Scholar
  58. Narumi, S., Nagai, Y., and Nagawa, Y., 1979, TRH: Action mechanism of an enhanced dopamine release from rat striatal slices, Folia Pharmacol. Japan., 75:239.CrossRefGoogle Scholar
  59. Nemeroff, C.B., Lossen, P.T., Bissette, G., Manberg, P.J., Wilson, I.C., Lipton, M.A., and Prange, Jr., A.J., 1979, Pharmaco-behavioral effects of hypothalamic peptides in animals and man: focus on thyrotropin-releasing hormone and neurotensin, Psychoneuroendocrinol., 3:279.CrossRefGoogle Scholar
  60. Parker, Jr., C.R., Mori, M., Pegues, J., Prasad, C., and Wilber, J.F., 1983, Evidence for the presence of immunoreactive cyclo (His-Pro) in the adult human brain, Peptides, 4:879.PubMedCrossRefGoogle Scholar
  61. Peterson, J.S., Kalivas, P.W., and Prasad, C., 1984, Cyclo (His-Pro) regulates striatal dopaminergic function, Neurosci. Abs., 10:1123.Google Scholar
  62. Plotnikoff, N.P., Prange, A.J., Jr., Breese, G.R., Anderson, M.A., and Wilson, I.C., 1972, TRH: Enhancement of DOPA activity by a hypothalamic hormone, Science, 178:417.PubMedCrossRefGoogle Scholar
  63. Prasad, C. and Peterkofsky, A., 1976, Demonstration of pyroglutamylpeptidase and amidase activities toward TRH in hamster hypothalamic extracts, J. Biol. Chem., 251:3229.PubMedGoogle Scholar
  64. Prasad, C., Matsui, T., and Peterkofsky, A., 1977, Antagonism of ethanol narcosis by histidyl-proline-diketopiperazine, Nature (London). 268:142.CrossRefGoogle Scholar
  65. Prasad, C., Matsui, T., Williams, J., and Peterkofsky, A., 1978, Thermoregulation in rats: Opposing effects of TRH and its metabolite histidyl-proline-diketopeperazine, Biochem. Biophys. Res. Commun., 85:1582.PubMedCrossRefGoogle Scholar
  66. Prasad, C., Wilber, J.F., Akerstrom, V., and Banerji, A., 1980, Cyclo(His-Pro): a selective inhibitor of rat prolactin secretion in vitro. Life Sci., 27:1979.Google Scholar
  67. Prasad, C., Mori, M., Wilber, J.F., Pierson, W., Pegues, J., and Jayaraman, A., 1982, Distribution and metabolism of Cyclo (His-Pro): a new member of the neuropeptide family, Peptides, 3:591.PubMedCrossRefGoogle Scholar
  68. Prasad, C., 1985, Thyrotropin-releasing hormone, In: “Handbook of Neurochemistry, Vol. 8”, A . Lajtha, ed., Plenum Publishing Corporation, New York.Google Scholar
  69. Prasad, C., Iriuchijima, T., Rao, J.K., Wilber, J.F., and Jayaraman, A., 1986a, Distribution and characterization of cyclo (His-Pro)-Iike immunoreactivity in human cerebrospinal fluid, Biochem. Biophys. Res. Commun., 136:835.PubMedCrossRefGoogle Scholar
  70. Prasad, C., Iruichijima, T., Edwards, R.M., Wilber, J.F., Mori, M., and Roger, D., 1986b, On the mechanism of fasting-associated elevations in hypothalamic cyclo (His-Pro) content, Neurochem. Res., 11:339.PubMedCrossRefGoogle Scholar
  71. Prasad, C., Jayaraman, A., Robertson, H.J.F., and Rao, J.K., 1987, Is all cyclo (His-Pro) derived from thyrotropin-releasing hormone?, Neurochem. Res., (In Press).Google Scholar
  72. Randrup, A., and Munkvad, I., 1967, Stereotyped activity produced by amphetamine in several animal species and man, Psychopharmacologia, 11:300.PubMedCrossRefGoogle Scholar
  73. Rastogi, R.B., Singhal, R.L., and Lapierre, Y.D., 1981, Effects of MK-771, a novel TRH analogue, on brain dopaminergic and serotonergic systems, Eur. J. Pharmacol., 73:307.CrossRefGoogle Scholar
  74. Sahakian, B.J., Robbins, T.W., Morgan, M.J., and Iversen, S.D., 1975, The effects of psychomotor stimulants on stereotypy and locomotor activity in socially deprived and control rats, Brain Res., 84:195.PubMedCrossRefGoogle Scholar
  75. Schumann, H.J., 1959, Uber den hydroxytyramingehalt der organe, Arch. Exp. Path. Pharmak., 236:474.CrossRefGoogle Scholar
  76. Shapiro, L.M., Bowes, G.M., and Vaughan, P.F.T., 1980, Effect of melanostatin and TRH on the biosynthesis and release of dopamine by rat brain striatal P2 fractions, Life Sci., 27:2099.PubMedCrossRefGoogle Scholar
  77. Sharp, T., Bennett, G.W., and Marsden, C.A., 1982, TRH analogues increase dopamine release from slices of rat brain, J. Neurochem., 39:1763.PubMedCrossRefGoogle Scholar
  78. Snyder, S.H., 1980, Brain peptides as neurotransmitters, Science, 209:976.PubMedCrossRefGoogle Scholar
  79. Sokoloff, L., 1977, Relation between physiological function and energy metabolism in the central nervous system, J. Neurochem., 29:13.PubMedCrossRefGoogle Scholar
  80. Spindel, E.R., Pettibone, D.J., and Wurtman, R.J., 1981, TRH content of rat striatum: modification by drugs and lesions, Brain Res., 216:323.PubMedCrossRefGoogle Scholar
  81. Starr, M.S., 1982, Influence of peptides on [3H]-dopamine release from superfused rat striatal slices, Neurochem. Intl., 4:233.CrossRefGoogle Scholar
  82. Tamaki, Y., and Kameyama, Y., 1982, Effect of TRH on acquisition and extinction of shuttlebox-avoidance behavior in Fischer-344 rats, Pharmacol. Biochem. Behav., 16:943.PubMedCrossRefGoogle Scholar
  83. Ungerstedt, U., 1971, Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behavior, Acta Physiol. Scand., 82 (Suppl. 367):49.Google Scholar
  84. Ushijima, I., Yamada, K., and Furukawa, T., 1984, Acute and long-term effects of TRH on behavior mediated by dopaminergic and cholinergic activities in mice, Psychopharmacol., 82:301.CrossRefGoogle Scholar
  85. Weil-Malherbe, H., and Bone, A.D., 1957, Intracellular distribution of catecholamines in the brain, Nature, 180:1050.PubMedCrossRefGoogle Scholar
  86. Wilber, J.F., Mori, M., Pegues, J., and Prasad, C., 1983, Endogenous cyclo (His-Pro) : a potential satiety neuropeptide in normal and genetically obese rodents, Trans. Assoc. Am. Phys., 96:131.PubMedGoogle Scholar
  87. Winokur, A., and Utiger, R.D., 1974, Thyrotropin releasing hormone: regional distribution in rat brain, Science, 185:265.PubMedCrossRefGoogle Scholar
  88. Yamada, K., Demarest, K.T., and Moore, K.E., 1984, Effects of behaviorally active doses of TRH and its analog MK-771 on dopaminergic neuronal systems in the brain on the rat, Neuropharmacol., 23:735.CrossRefGoogle Scholar
  89. Yanagisawa, T., Prasad, C., and Peterkofsky, A., 1980, The subcellular and organ distributin and natural form of histidyl-proline didetopiperazine in rat brain determined by a specific radioimmunoassay, J. Biol. Chem. 255:10290.PubMedGoogle Scholar
  90. Yokoo, H., Nakahara, T., Uchimura, H., Matsumoto, T., and Hirano, M., 1983, Effect of a TRH analog (DN-1417) on tyrosine hydroxylase activity in discrete areas of rat brain, Kurume Med. J., 30 Suppl.:S37.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Chandan Prasad
    • 1
  1. 1.Section of Endocrinology Department of MedicineLSU Medical CenterNew OrleansUSA

Personalised recommendations