Advertisement

A Hyperpolarization-Activated K+ Current in Isolated Vacuoles of Acer Pseudoplatanus

  • Roberta Colombo
  • Piera Lado
  • Antonio Peres
Part of the NATO ASI Series book series (NSSA, volume 134)

Abstract

Transport processes across the vacuolar membrane of higher plants are very important for cytoplasmic homeostasis and in general in the plant cell physiology. fionoplast transport properties are difficult to study because of the intracellular localization of the vacuolar membrane.

Keywords

Vacuolar Membrane Acer PSEUDOPLATANUS Conditioning Pulse Plant Vacuole Tonoplast Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almers, W., McCleskey, E. W., and Palade, P. T., 1984, A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions, J. Physiol. 353: 565.PubMedGoogle Scholar
  2. Bentrup, F.-W., Gogarten-Boekels, M., Hoffmann, B., Gogarten, J. P., and Baumann, C., 1986, ATP-dependent acidification and tonoplast hyperpolarization in isolated vacuoles from green suspension cells of Chenopodium rubrum L., Proc. Natl. Acad. Sci. U.S.A, 83: 2431.CrossRefGoogle Scholar
  3. Bentrup, F.-W., Gogarten-Boekels, M., Hoffmann, B., Gogarten, J. P., and Baumann, C., 1986, ATP-dependent acidification and tonoplast hyperpolarization in isolated vacuoles from green suspension cells of Chenopodium rubrum L., Proc. Natl. Acad. Sci. U.S.A, 83: 2431.CrossRefGoogle Scholar
  4. Blumwald, E., and Poole, R. J., 1985 b, Nitrate storage and retrieval in Beta vulgaris L.: Effects of nitrate and chloride on proton gradients in tonoplast vesicles, Proc. Natl. Acad. Sci. U.S.A., 82: 3683.Google Scholar
  5. Fukushima, Y., and Hagiwara, S., 1985, Currents carried by monovalent cations through calcium channels in mouse neoplastic B lymphocytes, J. Physiol. 358: 255.PubMedGoogle Scholar
  6. Gibrat, R., Barbier-Brygoo, H., Guern, J., and Grignon, C., 1985, Transtonoplast potential difference and surface potential of isolated vacuoles, in: “Biochemistry and Function of Vacuolar Adenosine-triphosphatase in Fungi and Plants”, B. P. Marin, ed., Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo.Google Scholar
  7. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1980, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflüg. Arch. Ges. Physiol. 391: 85.CrossRefGoogle Scholar
  8. Hedrich, R., Flügge, U. I., and Fernandez, J. M., 1986, Patch-clamp studies of ion transport in isolated plant vacuoles, FEBS Letters 204: 228.Google Scholar
  9. Hedrich, R., Flügge, U. I., and Fernandez, J. M., 1986, Patch-clamp studies of ion transport in isolated plant vacuoles, FEBS Letters 204: 228.Google Scholar
  10. Hedrich, R., Flügge, U. I., and Fernandez, J. M., 1986, Patch-clamp studies of ion transport in isolated plant vacuoles, FEBS Letters 204: 228.Google Scholar
  11. Kolb, H. A., Kohler, K., and Martinoia, E., 1986, Potassium channels in membranes of isolated mesophyll barley vacuoles, Plant Physiol. 80 S:137.Google Scholar
  12. Korzun, A. M., Kuzevanov, V. Ya., and Salyaev, R. K., 1985, Peculiarities of electrophysiological investigations of the vacuolar membrane in cells of higher plants, Soviet Plant Physiol. 31: 925.Google Scholar
  13. Kurkdjian, A. C., and Barbier-Brygoo, H., 1984, A hydrogen ion-selective liquid-membrane microelectrode for measurements of the vacuolar pH of plant cells in suspension culture, Anal. Biochem. 132: 96.CrossRefGoogle Scholar
  14. Lunevsky, V. Z., Zherelova, O. M., Vostrikov, I. Y., and Berestovsky, G. N., 1983, Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels, J. Membrane Biol., 72: 43.CrossRefGoogle Scholar
  15. Lüttge, U., Smith, J. A. C., Marto, G., and Osmond, C. B., 1981, Energetics of malate accumulation in the vacuoles of Kalanchoë tubiflora cells, FEBS Letters 126: 81.CrossRefGoogle Scholar
  16. Mandala, S., and Taiz, L., 1985, Proton transport in isolated vacuoles’ from corn coleoptiles, Plant Physiol. 78: 104.PubMedCrossRefGoogle Scholar
  17. Poole, R. J., Briskin, D. P., Krâtky, Z., and Johnstone, R. M., 1984, Density gradient localization of plasma membrane and tonoplast from storage tissue of growing and dormant red beet, Plant Physiol. 74: 549.PubMedCrossRefGoogle Scholar
  18. Sakmann, B., and Neher, E., 1983, “Single Channel Recording”, Plenum Publish. Corp., New-York.Google Scholar
  19. Schumaker, S. K., and Sze, H., 1985, A Cat+/H+ antiport system driven by the proton electrochemical gradient of a tonoplast H+-ATPase from oat roots, Plant Physiol. 79: 1111.Google Scholar
  20. Sze, H., 1985, H1-translocating ATPases: Advances using membrane vesicles, Annu. Rev. Plant. Physiol. 36: 175.CrossRefGoogle Scholar
  21. Takeda, K., Kurkdjian, A. C., and Kado, R. T., 1985, Single-channel currents from the tonoplast membrane of isolated Catharanthus roseus vacuoles, Plant Physiol. 77 S:88.Google Scholar
  22. Thom, M., and Komor, E., 1985, Electrogenic proton translocation by the ATPase of sugarcane vacuoles, Plant Physiol. 77: 329.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Roberta Colombo
    • 1
  • Piera Lado
    • 1
  • Antonio Peres
    • 2
  1. 1.Dipartimento di BiologiaCentro di Studio del C.N.R. per la Biologia Cellulare e Moleculare delle PianteItaly
  2. 2.Dipartimento di Fisiologia e Biochimica Generalidell’Università di MilanoMilanoItaly

Personalised recommendations