Advertisement

Plant Vacuoles pp 535-541 | Cite as

Stress Metabolism in Plant Cell Cultures: Enhancement of Primary and Secondary Metabolites in Osmotically and Salt Adapted Cell Cultures of Catharanthus Roseus

  • Kathryn Rudge
  • Philip Morris
Part of the NATO ASI Series book series (NSSA, volume 134)

Abstract

The work described is part of a study concerned with the effects of environmental stress on secondary metabolite production and identification of common responses to varying stress forms. Of additional interest were the mechanisms of stress adaptation induced in the cultures. Previous work in the area of stress research in plant cell cultures has focussed upon development of tolerant lines for agricultural and horticultural use (Katz and Tal, 1980), or as a tool for studying cellular events such as differentiation (Brown et al., 1979) or vacuolar acidification (Marigo et al., 1983).

Keywords

Osmotic Stress Stressed Cell Plant Cell Culture Central Vacuole Catharanthus Roseus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agochukwu, E. N., and Anosike, E. O., 1979, Effect of storage under nitrogen on methanol, lactate, malate and their dehydrogenases in yam tubers, Phytochemistry , 18: 1621.Google Scholar
  2. Bates, L. S., Waldren, R. P., and Teare, I. D., 1972, Rapid determination of free proline for water stress studies, Plant and Soil, 39: 205.CrossRefGoogle Scholar
  3. Briske, D. D., and Camp, B. J., 1982, Water stress increases alkaloid concentration in Threadleaf Groundsel (Senecio longilobus), Weed Sci., 30: 106.Google Scholar
  4. Brown, D. C. W., Leung, D. W. M., and Thorpe, T. A., 1979, Osmotic requirement for shoot formation in tobacco callus, Physiol. Plant., 46: 36.Google Scholar
  5. Fitter, A. H., and Hay, R. K. M., “Environmental Physiology of Plants”, Academic Press, London.Google Scholar
  6. Gutmann, I., and Wahlefeld, A. W., 1974 ), L(-)-malate. Determination with malate dehydrogenase and NAD, in: “Methods in Enzymatic Analysis”, H. U. Bergmeyer, ed., Academic Press, New-York.Google Scholar
  7. Handa, S., Bressan, R. A., Handa, A. K., Carpita, C., and Hasegawa, P. M., 1983, Solutes contributing to osmotic adjustement in cultured plant cells adapted to water stress, Plant Physiol., 73: 834.Google Scholar
  8. Heinstein, P. F., 1985, Future approaches to the formation of secondary natural products in plant cell suspension cultures, J. Nat. Prod., 48: 1.Google Scholar
  9. Katz, A., and Tal, M., 1980, Salt tolerance in ihe wild relatives of the cultivated tomato. Proline accumulation in callus tissue of Lycopersicon esculentum and L. peruvicanum, Z. Pflanzenphysiol. 98: 429.Google Scholar
  10. Kerr, P. S., Huber, S. C., and Israel, D. W., 1984, Effect of N-source on soybean leaf sucrose phosphate synthase, starch formation and whole plant growth, Plant Physiol., 75: 483.PubMedCrossRefGoogle Scholar
  11. Lance, C., and Rustin, P., 1984, The central role of malate in plant metabolism, Physiol. Vég., 22: 625.Google Scholar
  12. Marigo, G., Delorme, Y. M., Luttge, U., and Boudet, A. M., 1983, Rôle de l’acide malique dans la régulation du pH vacuolaire dans les cellules de Catharanthus cultivées in vitro, Physiol. Vég., 21: 1135.Google Scholar
  13. Morris, P., Scragg, A. H., Smart, N. J., and Stafford, A., 1985, Secondary product formation by cell suspension cultures, in: “Plant Cell Cultures-A Practical Approach”, R. A. Dixon, ed., IRL Press, Oxford.Google Scholar
  14. Parr, A. J., Smith, J. I., Robbins, R. J., and Rhodes, M. J. C., 1984, Apparent free space volume estimation: A nondestructive method for assessing the growth and membrane integrity/viability of immobilised plant cells, Plant Cell Reports, 3: 161.CrossRefGoogle Scholar
  15. Pate, D. W., 1983, Possible role of ultraviolet radiation in evolution of cannabis chemotypes, Econ. Bot., 37: 396.CrossRefGoogle Scholar
  16. Rajagopal, V., 1983, Effect of irradiance of free proline accumulation in stressed barley leaves, Z. Pflanzenphysiol., 11: 277.Google Scholar
  17. Rudge, K., and Morris, P., 1986, The effect of osmotic stress on growth and alkaloid accumulation in Catharanthus roseus, in: “Secondary Metabolism in Plant Cell Cultures”, P. Morris, A. H. Scragg, A. Strafford, and M. W. Fowler, eds., Cambridge University Press, Cambridge (1986).Google Scholar
  18. Spakman, D. H., Stein, W. H., and Moore, S., 1958, Recording apparatus for use in the chromatography of amino-acids, Anal. Chem., 30: 1190.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Kathryn Rudge
    • 1
  • Philip Morris
    • 2
  1. 1.Wolson Institute of BiotechnologyUniversity of SheffieldSheffieldEngland
  2. 2.Welsh Plant Breeding StationPlas GogerddanAberystwythWalesUK

Personalised recommendations