Advertisement

Plant Vacuoles pp 513-528 | Cite as

Papaver Latex and Alkaloid Storage Vacuoles

  • Margaret F. Roberts
Part of the NATO ASI Series book series (NSSA, volume 134)

Abstract

Papaver somniferum L. — the opium poppy — is an annual herb 50–150 cm in height. It is grown commercially under licence as the major source of the opiates codeine and morphine. The creamy colored latex oozes from the cut, unripe capsule and provides a readily available source of the laticifer contents. Opium, the dried exuded latex of the poppy, normally contains at least 25 alkaloids, which probably occur as salts of meconic acid or sulphate. The morphinan alkaloids are the predominant alkaloids in opium with morphine (up to 52% of the total alkaloids), codeine, and thebaine normally present. Papaverine, noscopine, and narceine are also commonly found in significant amounts. Microscopic study by Thureson-Klein (1970) has shown latex to be a multitude of particles suspended in a large central vacuole. This work, with the electron microscopy reported by Dickenson and Fairbairn (1975) and Nessler and Marlberg (1977), has established the presence of fragments of the endoplasmic reticulum, nuclei, mitochondria, Frey-Wyssling particles, and spherical bodies referred to as the 1000xg vacuoles. The bulk of’ these vacuoles contain alkaloids (Fairnbairn and Djote, 1980; Roberts, 1971) and form a distinct pellet when the latex is centrifuged at 1000 x g for 30 minutes. The formation of these vacuoles within the laticifers results from localised dilatation of elongated stacks of endoplasmic reticulum (Thureson-Klein, 1970; Nessler and Marlberg, 1977). Membrane staining with zinc iodine osmium tetroxide suggests that they are analogous to the central vacuole of other cells. However, this has not been conclusively demonstrated in view of the similar staining of dictyosome derived vacuoles reported by Danwalder and Whaley (1973) and Marty (1973 a and b).

Keywords

Papaver Somniferum Alkaloid Biosynthesis Chromaffin Granule Alkaloid Accumulation Chlormadinone Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., 1983, “Molecular Biology of the Cell”, Garland, New-York.Google Scholar
  2. Amann, M., Wanner, G., and Zenk, M. H., 1986, Intracellular compartmentation of two enzymes of berberine synthesis in plant cell culture, Planta 167: 310.Google Scholar
  3. Amann, M., Wanner, G., and Zenk, M. H., 1986, Intracellular compertmentation of two enzymes of berberine synthesis in plant cell culture, Planta, 167:310Google Scholar
  4. Antoun, M. D., and Roberts, M. F., 1975 b, Phosphetases in the latex of Papaver somniferung, Phytochemistry, 14:1275.Google Scholar
  5. Antoun, M. D., and Roberts, M. F., 1975 c, Enzymic studies with Papaver somniferum L. : 5. The occurrence of methyl-transferase enzymes in poppy latex, Planta Medica, 28:6.Google Scholar
  6. d’Auzac, J., and Lioret, C., 1974, Mise en evidence dun mecanisme daccumulation du citrate dans les lutoides du latex Dhevea brasiliensis (Kunth Mull. Arg.), Physiol, Veg., 12:617.Google Scholar
  7. Bohm, H., Olesch, B., and Schulze, C. H., 1972, Weitere untersuchungen uber die biosynthese von alkaloiden in isoliertem milchsaft des schlafmohns Papaver somniferum L., Biochem. Physiol. Pflanzen, 163:126.Google Scholar
  8. Boller, T., Durr, M., and Wiemken, A., 1975, Characterization of a specific transport for arginine in isolated yeast vacuoles, Eur. J. Biochem. 54: 81.PubMedCrossRefGoogle Scholar
  9. Chréstin, H., Gidrol, X., Marin, B., Jacob, J. L., and D’Auzac, J., 1984, Role of lutoidic tonoplast in the control of the cytosolic homeostasis within the laticiferous cells of Hevea Z. Pflanzenphysiol. 114: 269.Google Scholar
  10. Crétin, H., 1982, The proton gradient across the vacuo-lysosomal membrane of lutoids from the latex of Hevea brasiliensis J. Membrane Biol., 65: 175.Google Scholar
  11. Danwalder, M., and Whaley, W., 1973, Staining of cells of Zea mays root apices with the osmium-zinc iodide and osmium impregnation techniques, J. Ultrastruct. Res., 45: 279.CrossRefGoogle Scholar
  12. Deus-Neumann, B., and Zenk, M. H., 1984, A highly selective alkaloid uptake system in vacuoles of higher plants, Planta 162: 250.Google Scholar
  13. Deus-Neumann, B., and Zenk, M. H., 1986, Accumulation of alkaloids in plant vacuoles does not involve an ion-trap mechanism, Planta 167: 44.Google Scholar
  14. Dickenson, P. B., and Fairbairn, J. W., 1975, The ultrastructure of the alkaloid vesicles of Papaver somniferum Ann. Bot., 39: 707.Google Scholar
  15. Doll, S., Rodier, F., and Willenbrink, J., 1979, Accumulation of sucrose in vacuoles isolated from red beet tissue, Planta 144: 407.Google Scholar
  16. Doll, S., Rodier, F., and Willenbrink, J., 1979, Accumulation of sucrose in vacuoles isolated from red beet tissue, Planta 144: 407.Google Scholar
  17. Fairbairn, J. W., and Steele, M. J., 1981, Biosynthetic and metabolic activities of some organelles in Papaver somniferum latex, Phytochemistry 20: 1031.Google Scholar
  18. Fairbairn, J. W., and Steele, M. J., 1981, Biosynthetic and metabolic activities of some organelles in Papaver somniferum latex, Phytochemistry 20: 1031.Google Scholar
  19. Fairbairn, J. W., Hakim, F., and El Kheir, Y., 1974, Alkaloidal storage metabolism and translocation in the vesicles of Papaver somniferum latex, Phytochemistry 13: 1133.Google Scholar
  20. Fairbairn, J. W., Palmer, J. M., and Paterson, A., 1968, The alkaloids of Papaver somniferum L.: 8. Organelle activity of the isolated latex, Phytochemistry 7: 2117.Google Scholar
  21. Homeyer, B. C., and Roberts, M. F., 1984 a, Dopamine accumulation in Papaver somniferum L. Latex, Z. Naturforsch., 39c:1034.Google Scholar
  22. Homeyer, B. C., and Roberts, M. F., 1984 b, Alkaloid sequestration by Papaver somniferum L. LATEX, z. Naturforsch, 39c:876.Google Scholar
  23. Jans, B., 1973, Untersuchungen am milchsaft des schollkrautes (Chelidonium majus L.), Ber. Schweiz. Bot. Ges., 83: 306.Google Scholar
  24. Jindra, A., Kovacs, P., Pittnerova, Z., and Psenak, M., 1966, Biochemical aspects of the biosynthesis of opium alkaloids, Phytochemistry 5: 1303.Google Scholar
  25. Johnson, R. G., and Scarpa, A., 1979, Proton-motive force and catecholamine transport in isolated chromaffin granules, J. Biol. Chem. 254: 3750.PubMedGoogle Scholar
  26. Kanner, B. I., Fishkes, H., Maron, R., Sharon, I., and Schuldiner, S., 1979, Reserpine as a competitive and reversible inhibitor of the catecholamine transporter of bovine chromaffin granules, FEBS Letters 100: 1.Google Scholar
  27. Komor, E., Thom, M., and Maretzki, A., 1982, Vacuoles from sugarcane. III. Proton-motive potential difference, Plant Physiol 69: 1326.Google Scholar
  28. Kutchan, T. M., Ayabe, S., Krueger, R. J., Coscia, E. M., and Coscia, C. J., 1983, Cytodifferentiation and alkaloid accumulation in cultured cells of papaver bracteatum, Plant Cell Reports, 2:281.Google Scholar
  29. Kutchan, T. M., Rusch, M. D., and Coscia, C. J., 1986, Subcellular localization of alkaloids and dopamine in different vacuolar compartments of Papaver bracteatum, Plant Physiocl, 81:161.Google Scholar
  30. Leigh, R. A., and Walker, R. R., 1980, ATPase and acid phosphatase activities associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.), Planta 150: 222.Google Scholar
  31. Marin, B., Marin-Lanza, M., and Komor, E., 1981, The proton-motive potential difference across the vacuo-lysosomal membrane of Hevea brasiliensis (rubber tree) and its modification by a membrane-bound adenosine-triphosphatase, Biochem. J., 198: 365.Google Scholar
  32. Marty, F., 1973 a, Sites r â ifs à l’iodure de zinc tetroxide d’osmium dans les cellules de la racine d’Euphorbia characias L., C. R. Acad. Sci., Sér. D, 277: 1317.Google Scholar
  33. Marty, F., 1973 b, Dissemblance des faces golgiennes et activité des dictyosomes dans les cellules en cours de vacuolisation de la racine d’Euphorbia characias L., C. R. Acad. Sci., Sér. D, 277: 1749.Google Scholar
  34. Matile, P., 1978, Biochemistry and function of vacuoles, Annu, Rev. Plant Physico., 29:193.Google Scholar
  35. Matile, P., 1976, Localization of alkaloids and mechanisms of their accumulation in vacuoles of Chelidonium majus laticifers, in: “Secondary Metabolism and Coevolution”, M. Luckner, K. Mothes and L. Nover, eds., Nova Acta, Leopold., Suppl. 7.Google Scholar
  36. Matile, P., Jans, B., and Rickenbacher, R., 1970, Vacuoles of Chelidonim latex: Lysosomal property and accumulation of alkaloids, Biochem. Physiol. Pflanzen., 161:447.Google Scholar
  37. Meissner, L., 1966 a, Uber den RNS- und proteingehalt isolierter nilchsafte und den einbau radioaktiv markierter aminosauren in die latexproteine, Flora, 156:634.Google Scholar
  38. Meissner, L., 1966 b, Uber den gasstoffwechsel isolierter milchsafte, Flora, 157:1.Google Scholar
  39. Mitchell, P., 1966, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Ref. Camb. Philos. Soc., 41: 445.CrossRefGoogle Scholar
  40. Nessler, C. L., and Mahlberg, P. G., 1977, Ontogeny and cytochemistry of alkaloid vesicles in laticifers of Papaver somniferum Am. J. Bot., 64: 541.CrossRefGoogle Scholar
  41. Neumann, D., Krauss, G., Heike, M., and GrogeR, D., 1983, Indole alkaloid formation in storage suspension cultures of Catharanthus roseus, Planta Medica, 48:187.Google Scholar
  42. Pletscher, A., 1977, Effect of neuroleptics and other drugs on monoamine uptake by membranes of adrenal chromaffin granules, Br. J. Pharmacol. 59: 419.PubMedGoogle Scholar
  43. Pujarniscle, S., 1968, Caractere lysosomal des lutoides du latex Dhevea brasiliensis Mull. Arg., Physiol. Veg., 6:27.Google Scholar
  44. Renaudin, J. P., and Guern, J., 1982, Compartmentation mechanisms of indole alkaloids in cell suspension cultures of Catharanthus roseus, Physiol. Veg., 20:533.Google Scholar
  45. Roberts, M. F., 1971, Polyphenolases in the 1000xg fraction of Papaver somniferum latex, Phytochemistry 10: 3021.Google Scholar
  46. Roberts, M. F., 1974, Oxidation of tyrosine by Papaver somniferum latex, Phytochemistry 13: 119.Google Scholar
  47. Roberts, M. F., and Antoun, M. D., 1978, The relationship between L-dopa-decarboxylase in the latex of Papaver somniferum and alkaloid formation, Phytochemistry 17: 1083.Google Scholar
  48. Roberts, M. F., and Homeyer, B. C., 1985, Effect of Ph on temperature-dependent morphine uptake by Papaver somniferum and Papaver bracteatum latex, J. Pharm. Pharmacol., 37:140P.Google Scholar
  49. Roberts, M. F., McCarthy, D., Kutchan, T. M., and Coscia, C. J., 1983, Localisation of enzymes and alkaloidal metabolites in Papaver later, Arch. Biochem. Biophys., 222:599.Google Scholar
  50. Roberts, M. F., Kutchan, T. M., Coscia, C. J., and Brown, J., 1987, to be published. Robert, M. F., and Homeyer, B. C., 1987, to be published.Google Scholar
  51. Rottenberg, H., 1975, The measurement of transmembrane electrochemical proton gradients, J. Bioenerg. 7: 61.PubMedCrossRefGoogle Scholar
  52. Scherman, D., Jaudon, P., and Henry, J. P., 1983, Characterization of the monoamine carrier of chromaffin granule membrane by binding of (2–3H)-dihydrotetraabenazine, Proc. Natl. Acad. Sci. U.S.A., 80: 584.Google Scholar
  53. Schuldiner, S., Fishkes, H., and Kanner, B. J., 1978, Role of a transmembrane pH in epinephrine transport by chromaffin granule membrane vesicles, Proc. Natl. Acad. Sci. U.S.A., 75: 3713.PubMedCrossRefGoogle Scholar
  54. Slotkin, T. A., Salvaggio, M., Lau, C., and Kirksey, D., F., 1978, h-dopamine uptake by synaptic storage vesicles of rat whole brain and brain regions, Life Sciences, 22:823.Google Scholar
  55. Sorgato, M. C., Ferguson, S. J., Kell, D. B., and John, P., 1978, The proton-motive force in bovine heart submitochondrial particles. Magnitude, site of generation, and comparison with the phosphorylation potential, Biochem. J., 174: 237.Google Scholar
  56. Strugger, S., 1969, “Prakticum der Zell - und Gewebe - Physiologie der Pfflanzen”, Springer-Verlag, Berlin, Gottingen and Heidelberg.Google Scholar
  57. Thom, M., and Komor, E., 1984, Effect of magnesium and ATP on ATPases of sugarcane vacuoles, Planta 161: 361.Google Scholar
  58. Thureson-Klein, H., 1970, Observations on the development and fine structure of the articulated laticifers of Papaver somniferum Ann. Bot., 34: 751.Google Scholar
  59. Zenk, M. H., 1985, Enzymology of benzylisoquinoline alkaloid formation, in: “The Chemistry and Biology of Isoquinoline Alkaloids”, J. D. Phillipson, M. F. Roberts and M. H. Zenk, eds., Springer-Verlag, Heidelberg.Google Scholar
  60. Zenk, M. H., Rueffer, M., Amann, M., and Deus-Neumann, B., 1985, Benzylisoquinoline biosynthesis by cultivated plant cells and isolated enzymes, J. Nat. Prod., 48: 725.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Margaret F. Roberts
    • 1
  1. 1.School of PharmacyUniversity of LondonLondonEngland, UK

Personalised recommendations