Plant Vacuoles pp 503-511 | Cite as

Factors Affecting Alkaloid Production in Plant Cell Cultures

  • Margaret F. Roberts
Part of the NATO ASI Series book series (NSSA, volume 134)


Higher plants are the indispensable producers of medicinal substances such as steroids, cardiac glycosides and alkaloids. Over the past decade, plant cell cultures have been investigated as an alternative means of producing commercialy important secondary products. The potential advantage over traditional field methods of cultivation includes independence from geographical, climatic and political problems (Ellis, 1984; Heinstein, 1985; Staba, 1985; Zenk et al., 1985).


Cell Suspension Culture Indole Alkaloid Papaver Somniferum Fungal Elicitor Alkaloid Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amann, M., Nagakura, N., and Zenk, M. H., 1984, (5)-tetrahydroprotoberberine oxidase the final enzyme in protoberberine biosynthesis, Tetrahedron Letters 25: 953.Google Scholar
  2. Amann, M., Wanner, G., and Zenk, M. H., 1986, Intracellular compartmentation of two enzymes of berberine synthesis in plant cell cultures, Planta 161: 310.Google Scholar
  3. Anderson, L. A., Homeyer, B. C., Phillipson, J. D., and Roberts, M.F., 1983, Dopamine and cryptopine production by cell suspension cultures of Papaver somniferum J. Pharm. Pharmac. 35:21P.Google Scholar
  4. Anderson, L. A., Phillipson, J. D., and Roberts, M. F., 1985, Biosynthesis of secondary products by cell cultures of higher plants, in: “Advances in Biochemical Engineering and Biotechnology”, Vol. 31: Plant Cell Culture, A. Fiechter, ed., Springer-Verlag, Berlin.Google Scholar
  5. Anderson, L. A., Hay, C. A., Roberts, M. F., and Phillipson, J. D., 1986, Studies on Ailanthus altissima cell suspension cultures: Precursor feeding of L--(methylene 14C)-tryptophan and L-tryptophan, Plant Cell Reports in press.Google Scholar
  6. Anderson, L. A., Phillipson, J. D., and Roberts, M. F., 1987, Alkaloid production by plant cells, in: “Plant and Animal Cell Cultures: Process possibilities”, C. Webb and F. Mavituna, eds., Ellis Horwood, Ltd., Chichester.Google Scholar
  7. Breuling, A. W., Alfermann, A. W., and Reinhard, E., 1986, Cultivation of cell cultures of Berberis wilsonae in 20 1 air lift bioreactors, Plant Cell Reports 4:2 2 0.Google Scholar
  8. Constable, F., 1985, Morphinan alkaloids from plant cell cultures, in: “The Chemistry and Biology of Isoquinoline alkaloids”, J. D. Phillipson, M. F. Roberts and M. H. Zenk, eds., Springer-Verlag, Heidelberg.Google Scholar
  9. Deus-Neumann, B., and Zenk, M. H., 1984, Instability of indole alkaloid production in Catharanthus roseus cell suspension cultures, Planta Medica 50: 427.Google Scholar
  10. Deus-Neumann, B., and Zenk, M. H., 1986, Accumulation of alkaloids in plant vacuoles does not involve an ion-trap mechanism, Planta 167: 44.Google Scholar
  11. Di Cosmo, F., and Tallevi, S. G., 1985, Plant cell cultures and microbial insult: Interactions with biotechnological potential, Trends Biotechnol. 3: 110.Google Scholar
  12. Ellis, B. E., 1984, Probing secondary metabolism in plant cell cultures, Can. J. Bot., 62: 2912.Google Scholar
  13. Eilert, U., Kurz, W. G. W., and Constabel, F., 1985, Stimulation of sanguinarine accumulation in Papaver somniferum cell cultures by fungal elicitors, J. Plant. Physiol. 119: 65.CrossRefGoogle Scholar
  14. Fahn, W., Laussermair, E., Deus-Neumann, B., and Stockigt, J., 1985, Late enzymes of vindoline biosynthesis. S-adenosyl-L-methionine:11–0-demethyl-17–0-deacetylvindoline 11–0-methyl-transferase and unspecific acetyl-esterase, Plant Cell Reports 4: 337.CrossRefGoogle Scholar
  15. Fairnbairn, J. W., and Steele, M. F., 1981, Biosynthetic and metabolic activities in some organelles in Papaverum somniferum latex, Phytochemistry,20:1031.Google Scholar
  16. Furuya, T., Nakano, M., and Voshikawa, T., 1978, Biotransformations of (RS)-reticuline and morphinan alkaloids by cell cultures of Papaver somniferum, Ph y ytochemistry 17:891.Google Scholar
  17. Furuya, T., Yoshikawa, T., and Taira, M., 1984, Biotransformations of codeinone to codeine by immobilized cells of Papaver somniferum, Phytochemistry 23:999.Google Scholar
  18. Heinstein, P. F., 1985, Future approaches to the formation of secondary natural products in plant cell suspension cultures, J. Nat. Prod., 48: 1.Google Scholar
  19. Hemscheidt, T., and Zenk, M. H., 1985, Partial purification and characterisation of a NADPH dependent tetrahydroalstonine synthase from Catharanthus roseus cell suspension cultures, Plant Cell Reports 4: 216.Google Scholar
  20. Hinz, H., and Zenk, M. H., 1981, Production of protoberberine alkaloids by cell suspension cultures of Berberis species, Naturwissenschaften 68: 620.Google Scholar
  21. Hodges, C. C., and Rapoport, H., 1982, Enzymic conversion of reticuline to salutaridine by cell-free systems from Papaver somniferum, Biochemistry 21:3729.Google Scholar
  22. Homeyer, B. C., and Roberts, M. F., 1984, Alkaloid sequestration by Papaver somniferum latex, Z. Naturforsch. 39c: 876.Google Scholar
  23. Kutchan, T. M., Ayabe, S., and Coscia, C. J., 1985, Cytodifferentiation and Papaver alkaloid accumulation, in: “The Chemistry and Biology of the Isoquinoline Alkaloids”, J. D. Phillipson, M. F. Roberts, and M. H. Zenk, eds., Springer-Verlag, Berlin.Google Scholar
  24. Kutney, J. P., Aweryn, B., Chatson, K. B., Choi, L. S. L., and Kurz, W. G. W., 1986, Alkaloid production in Catharanthus roseus (L.) G. Don cell cultures. XIII. Effects of bioregulators on indole alkaloid biosynthesis, Plant Cell Reports 4: 2 59.Google Scholar
  25. Lundberg, P., Linsefors, L., Vogel, H. J., and Brodelius, P., 1986, Permeabilisation of plant cells: 31P-NMR studies on the permeability of the tonoplast, Plant Cell Reports 5: 13.CrossRefGoogle Scholar
  26. Mantell, S. H., and Smith, H., 1983, Cultural factors that influence secondary metabolite accumulations in plant cell and tissue cultures, in: “Plant Biotechnology”, S. H. Mantell and H. Smith, eds., Cambridge University Press, Cambridge.Google Scholar
  27. Matile, P., 1978, Biochemistry and function of vacuoles, Ann. Rev. Plant Physiol. 29: 193.CrossRefGoogle Scholar
  28. Nakagawa, K., Fukui, H., and Tabata, M., 1986, Hormonal regulation of berberine production in cell suspension cultures of Thalictrum minus, Plant Cell Reports 5:69.Google Scholar
  29. Neumann, D., Krauss, G., Heike, M., and Groger, D., 1983, Indole alkaloid formation in storage suspension cultures of Catharanthus roseus, Planta Medica 48:187.Google Scholar
  30. Renaudin, J.-P., and Guern, J., 1983, Compartmentalisation mechanisms of indole alkaloids in cell suspension cultures of Catharanthus roseus, Physiol. Vég. 20:533.Google Scholar
  31. Roberts, M. F., 1986, Papaver in: “Cell Culture and Somatic Cell Genetics of Plants”, Vol. 5: Phytochemicals in Cultured Cells, I. K. Vasil and F. Constabel, eds., Academic Press, Orlando.Google Scholar
  32. Rueffer, M., and Zenk, M. H., 1985, Berberine synthase, the methylene dioxy group forming enzyme in berberine synthesis, Tetrahedron Letters 26: 201.Google Scholar
  33. Sato, F., and Yamada, Y., 1984, High berberine producing cultures of Coptis japonica cells, Phytochemistry 23: 281.Google Scholar
  34. Schmetzer, E., Somissich, I., and Hahlbrock, K., 1985, Coordinated changes in transcription and translation rates of phenylalanine-ammonialyase and 4-coumarate:CoA ligase mRNA’s in elicitor-treated Petroselinum crispum cells, Plant Cell Reports 4: 293.CrossRefGoogle Scholar
  35. Staba, E. J., 1985, Milestone in plant tissue culture systems for production of secondary products, J. Nat. Prod., 48: 203.Google Scholar
  36. Steffens, P., Nagakura, N., and Zenk, M. H., 1985, Purification and characterization of the berberine bridge enzyme from Berberis beaniana cell cultures, Phytochemistry 24: 2577.Google Scholar
  37. Stockigt, J., 1979, Enzymic formation of intermediates in the biosynthesis of ajmalicine, strictosidine and cathenamine, Phytochemistry 18: 965.Google Scholar
  38. Wink, M., 1984, Evidence for an extracellular lytic compartment of plant cell sus-Google Scholar
  39. sion cultures: The cell culture medium, Naturwissenschaften 71:635.Google Scholar
  40. Zenk, M. H., 1980, Enzymic synthesis of ajmalicine and related indole alkaloidsGoogle Scholar
  41. J. Nat. Prod., 43: 438.Google Scholar
  42. Zenk, M. H., 1985, Enzymology of benzylisoquinoline alkaloid formation, in: “The Chemistry and Biology of Isoquinoline Alkaloids”, J. D. Phillipson, M. F. Roberts, and M. H. Zenk, eds., Springer-Verlag, Heidelberg.Google Scholar
  43. Zenk, M. H., El-Shagi, H., Arens, H., Stockigt, J., Weiler, E. W., and Deus, B., 1977, Formation of the indole alkaloids, serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus in: “Plant Tissue Culture and ItsGoogle Scholar
  44. Biotechnological Application“, W. Barz, E. Reinhard, and M. H. Zenk, eds., Springer-Verlag, Berlin.Google Scholar
  45. Zenk, M. H., Rueffer, M., Amann, M., and Deus-Neumann, B., 1985, Benzylisoquinoline biosynthesis by cultivated plant cells and isolated enzymes, J. Nat. Prod. 48: 725.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Margaret F. Roberts
    • 1
  1. 1.The School of PharmacyUniversity of LondonLondonUK

Personalised recommendations