Advertisement

Analysis of Vacuolar Polypeptides from Barley Mesophyll by Immunoblotting

  • Jürgen M. Schmitt
  • Enrico Martinoia
  • Dirk K. Hincha
  • Georg Kaiser
Part of the NATO ASI Series book series (NSSA, volume 134)

Abstract

Mesophyll vacuoles perform an important metabolic role as an intermediate storage compartment for photosynthetic products like sucrose, malate or citrate (Kaiser et al., 1982). Futhermore, salt-tolerant plants like barley take up salts and accumulate them in the vacuole when exposed to high salt concentrations (Yeo, 1983), thereby maintaining turgor without expending energy for the synthesis of organic osmotica. We have intensely studied the physiology of vacuolar transport of sucrose, malate, citrate, and chloride during the last years (Kaiser and Heber, 1984; Martinoia et al., 1985 and 1986). From kinetic experiments it became clear that the tonoplast contains several translocating proteins which are capable of catalysing fast and specific exchange between vacuolar and cytosolic compartments. At least one type of proton ATPase drives some of these transport processes.

Keywords

Electrophoretic Mobility Thylakoid Membrane Crassulacean Acid Metabolism Mesophyll Protoplast Vacuolar Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griesbach, R., and Sink, K., 1983, Evacuolation of mesophyll protoplasts, Plant Science Letters 30: 297.Google Scholar
  2. Hincha, D. K., Heber, U., and Schmitt, J. M., 1985, Antibodies against individual thylakoid membrane proteins as molecular probes to study chemical and mechanical freezing damage in vitro, Biochim. Biophys. Acta, 809:337.Google Scholar
  3. Höfner, R., Vazquez-Moreno, L., Winter, K., Bohnert, H. J., and Schmitt, J. M., 1986, Induction of crassulacean acid metabolism in Mesembryanthemum crystallinum by high salinity: Mass increase and de novo synthesis of PEP-carboxylase, submitted for publication.Google Scholar
  4. Hoer-Hansen, G., 1980, Identification of haem-proteins in thylakoid polypeptide patterns of barley, Carlsberg Res. Commun. 45: 167.Google Scholar
  5. Joyard, J., Grossman, A., Bartlett, S. G., Douce, R., and Chua, N. H., 1982, Characracterization of envelope membrane polypeptides from spinach chloroplasts, J. Biol. Chem. 257: 1095.PubMedGoogle Scholar
  6. Kaiser, G., and Heber, U., 1984, Sucrose transport into vacuoles isolated from barley mesophyll protoplasts, Planta 161: 562.Google Scholar
  7. Kaiser, G., Martinoia, E., Schmitt, J. M., Hincha, D. K., and Heber, U., 1986, Polypeptide pattern and enzymic character of vacuoles isolated from barley mesophyll protoplasts, Planta in press.Google Scholar
  8. Kaiser, G., Martinoia, E., and Wiemken, A., 1982, Rapid appearence of photosynthetic products in the vacuoles isolated from barley mesophyll protoplasts by a new fast method, Z. Pflanzenphysiol. 107: 103.Google Scholar
  9. Lörz, H., Harms, C. T., and Potrykus, I., 1976, Isolation of “vacuoplasts” from protoplasts of higher plants, Biochem. Physiol. Pflanzen 169:617.Google Scholar
  10. Machold, O., Simpson, D. J., and Hoyer-Hansen, G., 1977, Correlation between the freeze-fracture appearance and polypeptide composition of thylakoid membranes in barley, Carlsberg Res. Commun. 42: 499.Google Scholar
  11. Martinoia, E., Flügge, U. I., Kaiser, G., Heber, U. and Heldt, H. W., 1985, Energy-dependent uptake of malate into vacuoles isolated from barley mesophyll protoplasts, Biochim. Biophys. Acta 806:311.Google Scholar
  12. Martinoia, E., Schramm, M. J., Kaiser, G., Kaiser, W., and Heber, U., 1986, Transport of anions in isolated barley vacuoles, Plant Physiol. 80: 895.PubMedCrossRefGoogle Scholar
  13. Nowotny, A., 1979, “Basic Exercises in Immunochemistry”, 2nd Edition, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  14. Towbin, H., Staehelin, T., and Gordon, J., 1979, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications, Proc. Natl. Acad. Sci. U.S.A., 76: 4350.Google Scholar
  15. Wolter, F. P., Schmitt, J. M., Bohnert, H. J., and Tsugita, A., 1984, Simultaneous isolation of three peripheral proteins - a 32 kDa protein, ferredoxin NADP+ reductase and coupling factor - from spinach thylakoids and partial characterization of a 32 kDa protein, Plant Science Letters 34: 323.CrossRefGoogle Scholar
  16. Yeo, A. R., 1983, Salinity resistance: Physiologies and prices, Physiol. Plant. 58:214.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Jürgen M. Schmitt
    • 1
  • Enrico Martinoia
    • 1
  • Dirk K. Hincha
    • 1
  • Georg Kaiser
    • 1
  1. 1.Botanisches Institut der UniversitätWürzburgFederal Republic of Germany

Personalised recommendations