Plant Vacuoles pp 441-447 | Cite as

The Vacuole in Relation to Plant Growth Regulators

  • Philip John
Part of the NATO ASI Series book series (NSSA, volume 134)


They are five types of plant growth regulator: The auxins, gibberellins, cytokinins, abscisic acid and ethylene. In the present paper, I shall briefly review the role of the vacuole in their mode of action, compartmentation and biosynthesis, and then I shall discuss in more detail the evidence that indicates an involvement of the vacuole in ethylene biosynthesis. The terms “hormone” and “growth regulator” will be used interchangeably, in line with current usage (see, for example, Venis, 1985).


Abscisic Acid Plant Growth Regulator Ethylene Biosynthesis Ethylene Receptor Kiwi Fruit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amrhein, N., Scheebeck, D., Skorupka, H., Tophof, S., and Stockigt, J., 1981, Identication of a major metabolite of the ethylene precursor 1-amino-cyclopropane1-carboxylic acid in higher plants, Naturwiss., 68: 619.CrossRefGoogle Scholar
  2. Baldwin, J. E., Adlington, R. M., Lajoie, G. A., and Rawlings, B. J., 1985, On the biosynthesis of ethylene. Determination of the stereochemical course using modified substrates, J. Chem. Soc. Chem. Commun., 21:1496.CrossRefGoogle Scholar
  3. Bearder, J. R., 1980, Plant hormones and other growth substances their background, structure and occurrence, in: “Encyclopaedia of Plant Physiology”, Vol. 9, Hormonal Regulation of Development, J. McMillan, ed., Springer-Verlag, Berlin.Google Scholar
  4. Chedhomme, F., and Rona, J. P., 1986, Isolation and electrical characterization of tonoplast vesicles from Kiwi fruit (Actinidia chinensis), Physiol. Plant., 67:29.CrossRefGoogle Scholar
  5. Cohen, J. D., and Bandurski, R. S., Chemistry and physiology of the bound auxins, Annu. Rev. Plant Physiol., 33:403.Google Scholar
  6. Diolez, P., Davy de Virville, J., Latché, A., Moreau, F., Pech, J. C., and Reid, M., 1986, Role of the mitochondria in the conversion of 1-amino-cyclopropane1-carboxylic acid to ethylene in plant tissues, Plant Science Letters, 43:13.CrossRefGoogle Scholar
  7. Guy, M., and Kende, H., 1984a, Ethylene formation in Pisum sativum and Vicia Faba protoplasts, Planta, 160:276.CrossRefGoogle Scholar
  8. Guy, M., and Kende, H., 1984b, Conversion of 1-amino-cyclopropane-l-carboxylic acid to ethylene by isolated vacuoles of Pisum sativum L., Planta, 160:281.CrossRefGoogle Scholar
  9. Hall, M. A., 1986, Ethylene receptors, in: “Hormones, Receptors and Cellular Interactions in Plants”, C. M. Chadwick and D. R. Garrod, eds., Cambridge University Press, Cambridge.Google Scholar
  10. Hoffman, N. E., Fu, J., and Yang, S. F., 1983, Identification and metabolism of 1-(malonylamino)-cyclopropane-l-carboxylate in germinating peanut seeds, Plant Physiol., 71:197.PubMedCrossRefGoogle Scholar
  11. Hoffman, N. E., Yang, S. F., Ichihara, A., and Sakamura, S., 1982, Stereospecific conversion of 1-amino-cyclopropane-carboxylic acid to ethylene by plant tissue, Plant Physiol., 70:195.PubMedCrossRefGoogle Scholar
  12. Horgan, R., 1984, Cytokinins, in: “Advanced Plant Physiology”, M. B. Wilkins, ed., Pitman, London.Google Scholar
  13. Hornberg, C., and Weiler, E. W., 1984, High affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells, Nature, 310:321.CrossRefGoogle Scholar
  14. John, P., 1983, The coupling of ethylene biosynthesis to a transmembrane electrogenic proton flux, FEBS Letters, 152:141.CrossRefGoogle Scholar
  15. John, P., Porter, A. J. R., and Miller, A. J., 1985, Activity of the ethylene forming enzyme measured in vivo at different cell potentials, J. Plant Physiol., 121: 397.CrossRefGoogle Scholar
  16. Knuth, M. E., Keith, B., Clark, C., Garcia-Martinez, J. L., and Rappaport, L., 1983, Stabilization and transport capacity of cowpea and barley vacuoles, Plant Cell Physiol., 24:423.Google Scholar
  17. Libbenga, M. E., Mann, A. C., Van Den Linde, P. C. G., and Mennes, A. M., 1986, Auxin receptors, in: “Hormones, Receptors and Cellular Interactions in Plants”, C. M. Chadwick and D. R. Garrod, eds., Cambridge University Press, Cambridge.Google Scholar
  18. McKeon, T. A., and Yang, S. F., 1984, A comparison of the conversion of 1-amino2-ethyl-cyclopropane-l-carboxylic acid stereoisomers to 1-butene by pea epicotyls and by a cell-free system, Planta, 160:84.CrossRefGoogle Scholar
  19. Mayne, R. G., and Kende, H., 1986, Ethylene biosynthesis in isolated vacuoles of Vicia faba L. - requirement for membrane integrity, Planta, 167:159.CrossRefGoogle Scholar
  20. Milborrow, B. V., 1984, Inhibitors, in: “Advanced Plant Physiology”, M. B. Wilkins, ed., Pitman, London.Google Scholar
  21. Neill, S. J., Horgan, P., and Heald, J. K., 1983, Determination of the levels of abscisic acid glucose ester in plants, Planta, 157:371.CrossRefGoogle Scholar
  22. Ohlrogge, J. B., Garcia-Martinez, J. L., Adams, D., and Rappaport, L., 1980, Uptake and subcellular compartmentation of gibberellin Al applied to leaves of barley and cowpea, Plant Physiol., 66:422.PubMedCrossRefGoogle Scholar
  23. Pirrung, M. C., 1986, Mechanism of a lipoxygenase model for ethylene biosynthesis, Biochemistry, 25:114.CrossRefGoogle Scholar
  24. Porter, A. J. R., Borlakoglu, J. T., and John, P., 1986, Activity of the ethylene-forming enzyme in relation to plant cell structure and organization, J. Plant Physiol, in press.Google Scholar
  25. Raven, J. A., 1975, Transport of indole-acetic acid in plant cells in relation to pH and electrical potential gradients and its significance for polar IAA transport, New Phytol., 74:163.CrossRefGoogle Scholar
  26. Stoddart, J. L., 1986, Gibberellin receptors, in: “Hormones, Receptors and Cellular Interactions in Plants”, C. M. Chadwick and D. R. Garrod, eds., Cambridge University Press, Cambridge.Google Scholar
  27. Venis, M. A., 1984, Cell-free ethylene-forming systems lack stereochemical fidelity, Planta, 162:85.CrossRefGoogle Scholar
  28. Venis, M. A., 1985, “Hormone Binding Sites in Plants”, Longman, London.Google Scholar
  29. Yang, S. F., and Hoffman, N. E., 1984, Ethylene biosynthesis and its regulation in higher plants, Annu. Rev. Plant Physiol., 35:155.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Philip John
    • 1
  1. 1.Department of Agricultural Botany Plant Science LaboratoriesUniversity of ReadingReadingUK

Personalised recommendations