Advertisement

Plant Vacuoles pp 407-416 | Cite as

Intracellular Distribution of Organic and Inorganic Anions in Mesophyll Cells: Transport Mechanisms in the Tonoplast

  • Enrico Martinoia
  • Michael J. Schramm
  • Ulf-Ingo Flügge
  • Georg Kaiser
Part of the NATO ASI Series book series (NSSA, volume 134)

Abstract

Plants contain organic as well as inorganic ions. Both play an important role in metabolism. Malic acid accumulates in the vacuoles of CAM plants during the night, and this process is reversed during the daytime (Osmond and Holtum, 1981). In contrast, in leaves of C3 plants, vacuolar levels of malate are high at the end of the day and low in the morning (Gerhardt and Heldt, 1984). Both examples reflect the dynamics of vacuolar compartmentation.

Keywords

Inorganic Anion Mesophyll Protoplast Vacuolar Storage Chloride Uptake Malate Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christensen, L. E., Below, F. E., and Hageman, R. H., 1981, The effect of ear removal on senescence and metabolism of maize, Plant Physiol., 68: 1180.Google Scholar
  2. Gerhardt, R., and Heldt, H. W., 1984, Measurement of subcellular metabolite levels in leaves by fractionation of freeze-stopped material in non-aqueous media, Plant Physiol., 75: 542.PubMedCrossRefGoogle Scholar
  3. Jeschke, W. D., 1979, in: “Recent Advances in the Biochemistry of Cereals”, D. L. Laidman and R. G. Wyn-Jones, eds., Academic Press, London.Google Scholar
  4. Kaiser, G., and Heber, U., 1984, Sucrose transport into vacuoles isolated from barley mesophyll protoplasts, Planta 161: 562.Google Scholar
  5. Kaiser, G., Martinoia, E., and Wiemken, A., 1982, Rapid appearence of photosynthetic products in the vacuoles isolated from barley mesophyll protoplasts by a new fast method, Z. Pflanzenphysiol., 107: 103.Google Scholar
  6. Kaiser, W. M., Weber, H., and Sauer, M., 1983, Photosynthetic capacity, osmotic response and solute content of leaves and chloroplasts fromSpinacea oleraceaunder salt stress, Z. Pflanzenphysiol., 113:15.Google Scholar
  7. Martinoia, E., Flügge, U. I., Kaiser, G., Heber, U., and Heldt, H. W., 1985, Energy-dependent uptake of malate into vacuoles isolated from barley mesophyll protoplasts, Biochim. Biophys. Acta., 806:311.Google Scholar
  8. Martinoia, E., Heck, U., and Wiemken, A., 1981, Vacuoles as storage compartments for nitrate in barley leaves, Nature, 289: 292.CrossRefGoogle Scholar
  9. Martinoia, E., Schramm, M. J., Kaiser, G., Kaiser, W. M., and Heber, U., 1986, Transport of anions in isolated barley vacuoles. 1. Permeability to anions and evidence for a Cr-uptake system, Plant Physiol., 80: 895.Google Scholar
  10. McLilley, C. R., Chon, C. J., Mosbach, A., and Heldt, H. W., 1977, The distribution of metabolites between spinach chloroplasts and medium during photosynthesis in vitro, Biochim. Biophys. Acta., 460:259.CrossRefGoogle Scholar
  11. Osmond, C. B., and Holtum, J. A. M., 1981, in: “The Biochemistry of Plants”, M. D. Hatch and N. K. Boardman, eds., Vol. 8, Academic Press, New-York.Google Scholar
  12. Steingröver, E., Ratering, P., and Siesling, J., 1986, Daily changes in uptake, reduction and storage of nitrate in spinach grown at low light intensity, Physiol. Plant., 66:550.CrossRefGoogle Scholar
  13. Sze, H., 1985, H+-translocating ATPases: Advances using membrane vesicles, Annu. Rev. Plant Physiol., 36:175.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Enrico Martinoia
    • 1
  • Michael J. Schramm
    • 1
  • Ulf-Ingo Flügge
    • 2
  • Georg Kaiser
    • 1
  1. 1.Lehrstuhl Botanik I der UniversitätWürzburgGermany
  2. 2.Lehrstuhl für BiochemiePflanzen der UniversitätGöttingenGermany

Personalised recommendations