Advertisement

Plant Vacuoles pp 361-368 | Cite as

Dynamics of Lysosomal Functions in Plant Vacuoles

  • Thomas Boller
  • Andres Wiemken
Part of the NATO ASI Series book series (NSSA, volume 134)

Abstract

We have recently reviewed the dynamics of vacuolar compartmentation in plants (Boller and Wiemken, 1986). Here, we discuss one particular aspect, the lysosomal functions of vacuoles, in more detail.

Keywords

Mung Bean Protein Body Mesophyll Protoplast Autophagic Process Jerusalem Artichoke Tuber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, S., and Glund, K., 1986, Localization of RNA-degrading enzyme activity within vacuoles of cultured tomato cells, Physiol. Plant., 66: 79.Google Scholar
  2. Baumgartner, B., Tokuyasu, K. T., and Chrispeels, M. J., 1978, Localization of vicilin peptidohydrolase in the cotyledons of mung bean seedlings by immunofluorescence microscopy, J. Cell. Biol., 79: 10.Google Scholar
  3. Bhalla, P. L., and Dalling, M. J., Endopeptidases and carboxypeptidase enzymes of vacuoles from mesophyll protoplasts of the primary leaf of wheat seedlings, J. Plant Physiol., 122: 289.Google Scholar
  4. Blumwald, E., Fortin, M. G., Rea, P. A., Verma, D. P. S., and Poole, R. J., 1985Google Scholar
  5. Presence of host-plasma membrane type H+-ATPase in the membrane enve-lope enclosing the bacteroids in soybean root nodule, Plant Physiol., 78:665.Google Scholar
  6. Boller, T., 1982, Enzymatic equipment of plant vacuoles, Physiol. Vég., 20: 247.Google Scholar
  7. Boller, T., and Kende, H., 1979, Hydrolytic enzymes in the central vacuole of plant cells, Plant Physiol., 63: 1123.PubMedCrossRefGoogle Scholar
  8. Boller, T., Gehri, A., Mauch, F., and Vögeli, U., 1983, Chitinase in bean leaves: Induction by ethylene, purification, properties, and possible function, Planta, 157: 22.Google Scholar
  9. Boller, T., and Vögeli, U., 1984, Vacuolar localization of ethylene-induced chitinase in bean leaves, Plant Physiol., 74: 442.PubMedCrossRefGoogle Scholar
  10. Boller, T., and Wiemken, A., 1986„ Dynamics of vacuolar compartmentation, Annu. Rev. Plant Physiol., 37: 137.Google Scholar
  11. Brewin, N. J., Robertson, J.G., Wood, E.A., Welles, B., Larkins, A. P., Galfre, G., and Butcher, G. W., 1985, Monoclonal antibodies to antigens on the peribacteroid membrane from Rhizobium-induced root nodules of pea cross-react with plasma membranes and Golgi bodies, EMBO J., 4: 605.PubMedGoogle Scholar
  12. Buvat, R., and Robert, G., 1979, Vacuole formation in the actively growing root meristem of barley ( Hordeum sativum ), Amer. J. Bot., 66: 1219.Google Scholar
  13. Chrispeels, M. J., 1984, Biosynthesis, processing and transport of storage proteins and lectins in cotyledons of developing legume seeds, Phil. Trans. R. Soc. London B, 304: 309.Google Scholar
  14. Canut, H., Alibert, G., and Boudet, A. M., 1985 a, Proteases of Melilotus alba meso-phyll protoplasts. I. Intracellular localization, Plant Physiol., 39: 163.Google Scholar
  15. Canut, H., Alibert, G., and Boudet, A. M., 1985 b, Hydrolysis of intracellular proteins in vacuoles isolated from Acer pseudoplatanus cells, Plant Physiol., 79:1111. Canut, H., Alibert, G., Carrasco, A., and Boudet, A. M., 1986, Rapid degradation of abnormal proteins in vacuoles from Acer pseudoplatanus L. cells, Plant Physiol., 81: 460.Google Scholar
  16. Dean, R. T., 1984, Modes of access of macromolecules to the lysosomal interior, Biochem. Soc. Trans., 12: 911.Google Scholar
  17. Duddridge, J. A., and Read, D. J., 1982, An ultrastructural analysis of the development of mycorrhizas in Monotropa hypopitys L., New Phytol., 92: 203.CrossRefGoogle Scholar
  18. Franceschi, V. R., and Giaquinta, R.T., 1983 a, The paraveinal mesophyll of soybean leaves in relation to assimilate transfer and compartmentation. I. Ultra-structure and histochemistry during vegetative development, Planta, 157: 411.Google Scholar
  19. Franceschi, V. R., and Giaquinta, R. T., 1983 b, The paraveinal mesophyll of soybean leaves in relation to assimilate transfer and compartmentation. II. Structural, metabolic and compartmental changes during reproductive growth, Planta, 157: 422.Google Scholar
  20. Frehner, M., Keller, F., and Wiemken, A., 1984, Localization of fructan metabolism in the vacuoles isolated from protoplasts of Jerusalem artichoke tubers ( Helianthus tuberosus L. ), J. Plant Physiol., 116: 197.Google Scholar
  21. Harder, D. E., and Chong, J., 1984, Structure and Physiologia of Haustoria, in: “The Cereal Rusts”, Vol. 1, W. R. Bushnell and A. P. Roelfs, eds., Academic Press, Orlando.Google Scholar
  22. Heck, U., Martinoia, E., and Matile, P., 1981, Subcellular localization of acid proteinase in barley mesophyll protoplasts, Planta, 151: 198.CrossRefGoogle Scholar
  23. Higgins, T. J. V., 1984, Synthesis and regulation of major proteins in seeds, Annu. Rev. Plant Physiol., 35: 191.Google Scholar
  24. Hilling, B., and Amelunxen, F., 1985, On the development of the vacuole. II. Further evidence for endoplasmic reticulum origin, Eur. J. Cell Biol., 38: 195.Google Scholar
  25. Hübner, R., Depta, H., and Robinson, D. G., 1985, Endocytosis in maize root cap cells. Evidence obtained using heavy metal solutions, Protoplasma, 129: 214.Google Scholar
  26. Jacobsen, J. V., Zwar, J. A., and Chandler, P. M., 1985, Gibberellic acid-responsive protoplasts from mature aleurone of Himalaya barley, Planta, 163: 430.CrossRefGoogle Scholar
  27. Joachim, S., and Robinson, D. G., 1984, Endocytosis of cationized ferritin by bean leaf protoplasts, Eur. J. Cell Biol., 34: 212.Google Scholar
  28. Keller, F., and Matile, P., 1985, The role of the vacuole in storage and mobilization of stachyose in tubers of Stachys sieboldii, J. Plant Physiol., 119: 369.CrossRefGoogle Scholar
  29. Kijne, J. W., 1975, The fine structure of pea root nodules. 2. Senescence and disin-tegration of the bacteroid tissue, Physiol. Plant Pathol., 7: 17.Google Scholar
  30. Leigh, R. A., 1979, Do plant vacuoles degrade cytoplasmic components ? Trends Biochem. Sci., 4: 37.Google Scholar
  31. Leigh, R. A., ap Rees, T., Fuller, W. A., and Banfield, J., 1979, The location of acid invertase activity and sucrose in the vacuoles of storage roots of beet root ( Beta vulgaris ), Biochem. J., 178: 539.Google Scholar
  32. Lin, W., and Wittenbach, V. A., 1981, Subcellular localization of proteases in wheat and corn mesophyll protoplasts, Plant Physiol., 67: 969.PubMedCrossRefGoogle Scholar
  33. Makarow, M., 1985, Endocytosis in Saccharomyces cerevisiae. Internalization of amylase and fluorescent dextran into cells, EMBO J., 4: 1861.Google Scholar
  34. Manners, J. M., and Gay, J. L., 1983, The host-parasite interface and nutrient transfer in biotrophic parasitism, in: “Biochemical Plant Pathology”, J. A. Callow, ed., Wiley, Chichester.Google Scholar
  35. Martinoia, E., Heck, U., Dalling, M. J., and Matile, P., 1983, Changes in chloroplast number and chloroplast constituents in senescing barley leaves, Biochem. Physiol. Pflanzen, 178: 147.Google Scholar
  36. Marty, F., 1978, Cytochemical studies on GERL, provacuoles, and vacuoles in root meristematic cells of Euphorbia, Proc. Natl. Acad. Sci. USA, 75:852. Matile, P., 1975, “The lytic compartment of plant cells”, Springer, Berlin.Google Scholar
  37. Mellor, R. B., Dittrich, W., and Werner, D., 1984, Soybean root response to infection by Rhizobium japonicum: Mannoconjugate turn-over in effective and ineffec-tive nodules, Physiol. Plant Pathol., 24: 61.Google Scholar
  38. Nishimura, M., and Beevers, H., 1978, Hydrolases in vacuoles from castor bean endosperm, Plant Physiol., 62: 44.PubMedCrossRefGoogle Scholar
  39. Nishimura, M., and Beevers, H., 1979, Hydrolysis of protein in vacuoles isolated from higher plant tissue, Nature, 277: 412.CrossRefGoogle Scholar
  40. Palevitz, B. A., O’Kane, D. J., Kobres, R. E., and Raikhel, N. V., 1981, The vacuole system in stomatal cells of Allium. Vacuole movements and changes in morphology in differentiating cells as revealed by epifluorescence, video-and electron microscopy, Protoplasma, 109: 23.Google Scholar
  41. Racusen, D., 1984, Lipid acyl hydrolase of patatin, Can. J. Bot., 62: 1640.Google Scholar
  42. Riezman, H., 1985, Endocytosis in yeast: Several of the yeast secretory mutants are defective in endocytosis, Cell, 40: 1001.Google Scholar
  43. Robertson, D. C., and Robertson, J. A., 1982, Ultrastructure of Pterospora andromedea Nuttall and Sarcodes sanguinea Torrey mycorrhizas, New Phytol., 92: 539.CrossRefGoogle Scholar
  44. Romanenko, A. S., Kovtun, G. YU., and Salyev, R. K., 1986, Effect of metabolic inhibitors on pinocytosis of uranyl ions by radish cells: Probable mechanisms of pinocytosis, Ann. Bot., 57: 1.Google Scholar
  45. Scannerini, S., and Bonfante-Fasolo, P., 1983, Comparative ultrastructural analysis of mycorrhizal associations, Can. J. Bot., 61: 917.Google Scholar
  46. Schmidt, G. W., and Mishkind, M. L., 1983, Rapid degradation of unassembled ribulose-1,5-biphosphate carboxylase small subunits in chloroplasts, Proc. Natl. Acad. Sci. USA, 80: 2632.Google Scholar
  47. Tanchak, M. A., Griffing, L.R., Mersey, B. G., and Fowke, L. C., 1984, Endocytosis of cationized ferritin by coated vesicles of soybean protoplasts, Planta, 162: 481.CrossRefGoogle Scholar
  48. Thayer, S. S., and Huffaker, R. C., 1984, Vacuolar localization of endoproteinases EP1 and EP2 in barley mesophyll cells, Plant Physiol., 75: 70.PubMedCrossRefGoogle Scholar
  49. Toth, R., and Miller, R. M., 1984, Dynamics of arbuscule development and degeneration of a Zea mays mycorrhiza, Amer. J. Bot., 71: 449.Google Scholar
  50. Truchet, G., and Coulomb, P., 1973, Misee e évidence et évolution du système phytolysosomal dans les cellules des différentes zones de nodules radiculaires de pois (Pisum sativum L.). Notion d’hétérophagie, J. Ultrastruct. Res., 43: 36.Google Scholar
  51. Van der Wilden, W., Matile, P., Schellenberg, M., Meyer, J., and Wiemken, A., 1973, Vacuolar membranes: Isolation from yeast cells, Z. Naturforsch. Teil C, 28: 416.Google Scholar
  52. Van der Wilden, W., Herman, E. M., and Chrispeels, M. J., 1980, Protein bodies of mung bean cotyledons as autophagic organelles, Proc. Natl. Acad. Sci. USA, 77: 428.Google Scholar
  53. Van der Wilden, W., Seghers, J. H. L., and Chrispeels, M. J., 1983, Cell walls of Phaseolus vulgaris contain the azocoll digesting proteinase, Plant Physiol., 73: 576.PubMedCrossRefGoogle Scholar
  54. Vaughn, K. C., and Duke, S. 0., 1981, Evaginations from the plastid envelope: A method for transfer of substances from plastid to vacuole, Cytobios, 32: 89.Google Scholar
  55. Vitale, A., and Chrispeels, M. J., 1984, Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: Attachment in the Golgi apparatus and removal in the protein bodies, J. Cell Biol., 99: 133.Google Scholar
  56. Wagner, W., Keller, F., and Wiemken, A., 1983, Fructan metabolism in cereals: Induction in leaves and compartmentation in protoplasts and vacuoles, Z. Pflanzenphysiol., 112: 359.Google Scholar
  57. Wagner, W., and Wiemken, A., 1986, Properties and subcellular localization of fructan hydrolase in the leaves of barley (Hordeum vulgare L. cv. Gerbel), J. Plant Physiol., 123: 429.Google Scholar
  58. Wagner, W., Wiemken, A., and Matile, P., 1986, Regulation of fructan metabolism in leaves of barley (Hordeum vulgare L. cv. Gerbel ), Plant Physiol., 81: 444.Google Scholar
  59. Wardley, T. M., Bhalla, P. L., and Dalling, M. J., 1984, Changes in the number and composition of chloroplasts during senescence of mesophyll cells of attached and detached primary leaves of wheat ( Triticum aestivum L.) leaves, Plant Physiol., 75: 421.Google Scholar
  60. Werner, D., Mörschel, E., Kort, R., Mellor, R. B., and Bassarab, S., 1984, Lysis of bacteroids in the vicinity of the host cell nucleus in an ineffective (fix) root nodule of soybean ( Glycine max ), Planta, 162: 8.Google Scholar
  61. Wiemken, A., Schellenberg, M., and Urech, K., 1979, Vacuoles: The sole compartments of digestive enzymes in yeast ( Saccharomyces cerevisiae ), Arch. Microbiol., 123: 23.Google Scholar
  62. Wink, M., 1984, Evidence for an extracellular lytic compartment of plant cell sus- pension cultures: The cell culture medium, Naturwissenschaften, 71: 635.Google Scholar
  63. Wittenbach, V. A., Lin, W., and Hebert, R. R., 1982, Vacuolar localization of pro-teases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves, Plant Physiol., 69: 98.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Thomas Boller
    • 1
  • Andres Wiemken
    • 1
  1. 1.Botanisches Institut, Abteilung PflanzenphysiologieUniversität BaselBaselSwitzerland

Personalised recommendations