Advertisement

Plant Vacuoles pp 305-314 | Cite as

Accumulation of Organic Solutes in Plant Vacuoles: The Interpretation of Data is Not so Easy

  • Jean Guern
  • Jean-Pierre Renaudin
  • Hélène Barbier-Brygoo
Part of the NATO ASI Series book series (NSSA, volume 134)

Abstract

Significant progress has been made recently about the mechanisms of transport of solutes across the tonoplast (Alibert and Boudet, 1982; Leigh, 1983; Deus-Neumann and Zenk, 1984; Boller, 1985; Thom and Maretzki, 1985; Deus-Neumann and Zenk, 1986; Thom et al., 1986). The diversity of transport systems tentatively identified at the tonoplast appears rather large (Guern et al., 1987). A few examples illustrate the various types of transmembrane transfer involved in the vacuolar exchanges.

Keywords

Indole Alkaloid Solute Uptake Crassulacean Acid Metabolism Plant Plant Vacuole Membrane Potential Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alibert, G., and Boudet, A. M., 1982, Progrès, problèmes et perspectives dans l’obtention et l’utilisation de vacuoles isolées, Physiol. Vég., 20: 289.Google Scholar
  2. Barbier-Brygoo, H., Gibrat, R., Renaudin, J.-P., Brown. S. C., Pradier, J.-M., Grignon, C., and Guern, J., 1985, Membrane potential difference of isolated plant vacuoles: Positive or negative ? II. Comparison of measurements with microelectrodes and cationic probes, Biochim. Biophys. Acta, 819: 215.Google Scholar
  3. Barbier-Brygoo, H., Renaudin, J.-P., Manigault, P., Mathieu, Y., Kurkdjian, A., and Guern, J., 1987, Properties of vacuoles as a function of the isolation procedure, in: “Plant Vacuoles. Their importance in Solute Compartmentation and Their Applications in Biotechnology” B. Marin, ed., Plenum Publishing Corporation, New-York.Google Scholar
  4. Boller, T., 1985, Intracellular transport of metabolites in protoplasts: Transport between cytosol and vacuole, in: “The Physiological Properties of Plant Protoplasts”, P. E. Pilet, ed., Springer-Verlag, Berlin.Google Scholar
  5. Briskin, D. P., Thornley, W. R., and Wyse, R. E., 1985, Membrane transport in isolated vesicles from sugarbeet taproot. II. Evidence for a sucrose/H+ antiport, Plant Physiol., 78: 871.PubMedCrossRefGoogle Scholar
  6. Brown, S. C., and Coombe, B. G., 1984, Proposal for hexose group transport at the tonoplast of grape pericarp cells, Physiol. Vég., 22: 231.Google Scholar
  7. Buser-Suter, C., Wiemken, A., and Matile, P., 1982, A malic acid permease in isolated vacuoles of a crassulacean acid metabolism plant, Plant Physiol., 69: 456.PubMedCrossRefGoogle Scholar
  8. Courtois, D., and Guern, J., 1980, Tryptamine uptake and accumulation by Catharanthus roseus cells cultivated in liquid medium, Plant Science Letters, 18: 85.CrossRefGoogle Scholar
  9. Deus-Neumann, B., and Zenk, M. H., 1984, A highly selective alkaloid uptake system in vacuoles of higher plants, Planta, 162: 250.CrossRefGoogle Scholar
  10. Deus-Neumann, B., and Zenk, M. H., 1986, Accumulation of alkaloids in plant vacuoles does not involve an ion-trap mechanism, Planta, 167: 44.CrossRefGoogle Scholar
  11. Doll, S., Rodier, F., and Willenbrink, J., 1979, Accumulation of sucrose in vacuoles isolated from red beet tissue, Planta, 144: 407.CrossRefGoogle Scholar
  12. Gibrat, R., Barbier-Brygoo, H., Guern, J., and Grignon, C., 1985, Membrane potential difference of isolated plant vacuoles: Positive or negative ? I. Evidence for membrane binding of cationic probes, Biochim. Biophys. Acta, 81: 206.Google Scholar
  13. Gibrat, R., Barbier-Brygoo, H., Guern, J., and Grignon, C., 1985, Membrane potential difference of isolated plant vacuoles: Positive or negative ? I. Evidence for membrane binding of cationic probes, Biochim. Biophys. Acta, 81: 206.Google Scholar
  14. Guy, M., Reinhold, L., and Michaeli, D., 1979, Direct evidence for a sugar transport mechanism in isolated vacuoles, Plant Physiol., 64: 61.PubMedCrossRefGoogle Scholar
  15. Homeyer, B. C., and Roberts, M. F., 1984, Alkaloid sequestration by Papaver somniferum latex, Z. Naturforsch., 39 c: 876.Google Scholar
  16. Kaiser, G., and Heber, U., 1984, Sucrose transport into vacuoles isolated from barley mesophyll protoplasts, Planta, 161: 562.CrossRefGoogle Scholar
  17. Kurkdjian, A. C., 1982, Absorption and accumulation of nicotine by Acer pseudoplatanus and Nicotiana tabaccum cells, Physiol. Vég., 20: 73.Google Scholar
  18. Leigh, R. A., 1983, Methods, progress and potential for the use of isolated vacuoles in studies of solute transport in higher plant cells, Physiol. Plant., 57: 390.CrossRefGoogle Scholar
  19. Manigault, P., Manigault, J., and Kurkdjian, A. C., 1983, A microfluorimetric method for vacuolar pH measurement in plant cells using 9-aminoacridine, Physiol. Vég., 21: 129.Google Scholar
  20. Marin, B., and Chréstin, H., 1985, Compartmentation of solutes and the role of tonoplast ATPase in Hevea latex, in: “Biochemistry and Function of Vacuolar Adenosine triphosphatase in Fungi and Plants”, B. P. Marin, ed., Springer-Verlag, Berlin, Heidelberg, New-York and Tokyo.CrossRefGoogle Scholar
  21. Martinoia, E., Flügge, I., Kaiser, G., Heber, U., and Heldt, H. W., 1985, Energy-dependent uptake of malate into vacuoles isolated from barley mesophyll protoplasts, Biochim. Biophys. Acta, 806: 311.CrossRefGoogle Scholar
  22. Matern, U., Reichenbach, C., and Heller, W., 1986, Efficient uptake of flavanoids into parsley (Petroselinum hortense) vacuoles requires acylated glycosides, Planta, 167: 183.CrossRefGoogle Scholar
  23. Matile, P., 1976, Localization of alkaloids and mechanism of their accumulation in vacuoles of Chelidonium majus laticifers, Nova Acta Leopold., Suppl. 7: 139.Google Scholar
  24. Müller, E., 1976, Principles in transport and accumulation of secondary products, Nova Acta Leopold., Suppl. 7: 123.Google Scholar
  25. Nagakawa, K., Konagai, A., Fukui, H., and Tabata, M., 1984, Release and crystallization of berberine in the liquid medium of Thalictrum minus cell suspension cultures, Plant Cell Reports, 3: 254.CrossRefGoogle Scholar
  26. Neumann, D., Krauss, G., Hieke, M., and Gröger, D., 1983, Indole alkaloid formation and storage in cell suspension cultures of Catharanthus roseus, Planta Medica, 48: 20.CrossRefGoogle Scholar
  27. Ohsumi, Y., and Anraku, Y., 1981, Active transport of basic amino-acids driven by a proton-motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae, J. Biol. Chem., 256: 2079.Google Scholar
  28. Rataboul, P., Alibert, G., Boller, T., and Boudet, A. M., 1985, Intracellular transport and vacuolar accumulation of o-coumaric acid glucoside in Melilotus alba mesophyll cell protoplasts, Biochim. Biophys. Acta, 816: 25.CrossRefGoogle Scholar
  29. Renaudin, J. P., and Guern, J., 1982, Compartmentation mechanisms of indole alkaloids in cell suspension cultures of Catharanthus roseus, Physiol. Vég., 2 0: 533.Google Scholar
  30. Renaudin, J.-P., Brown, S. C., and Guern, J., 1985, Compartmentation of alkaloids in a cell suspension of Catharanthus roseus: A reappraisal of the role of pH gradients, in: “Primary and Secondary Metabolism of Plant Cell Cultures”, K. H. Neumann, W. Barz, and E. Reinhard, eds., Springer-Verlag, Berlin, Heidelberg, New-York and Tokyo.Google Scholar
  31. Renaudin, J. P., and Guern, J., 1987, Ajmalicine transport into vacuoles isolated from Catharanthus roseus cells, in: “Plant Vacuoles. Their Importance in Solute Compartmentation and Their Applications in Biotechnology”, B. Marin, ed., Plenum Publishing Corporation, New-York.Google Scholar
  32. Sharma, V., and Strack, D., 1985, Vacuolar localization of 1-sinapoylglucose:L-malate-sinapoyltransferase in protoplasts from cotyledons of Raphanus sativus, Planta, 163: 563.Google Scholar
  33. Strack, D., and Sharma, V., 1985, Vacuolar localization of the enzymatic synthesis of hydroxycinnamic acid esters of malic acid in protoplasts from Raphanus sativus leaves, Physiol. Plant., 65: 45.CrossRefGoogle Scholar
  34. Teulières, C., Alibert, A., and Ranjeva, R., 1985, Reversible phosphorylation of tonoplast proteins involves tonoplast-bound calcium-calmodulin-dependent protein kinase(s) and protein-phosphatase(s), Plant Cell Reports, 4: 199.CrossRefGoogle Scholar
  35. Thom, M., and Komor, E., 1984, H+-sugar antiport as the mechanism of sugar uptake by sugarcane vacuoles, FEBS Letters, 173: 1.CrossRefGoogle Scholar
  36. Thom, M., Leigh, R. A., and Maretzki, A., 1986, Evidence for the involvement of a UDP-glucose-dependent group translocator in sucrose uptake into vacuoles of storage roots of red beet, Planta, 167: 410.CrossRefGoogle Scholar
  37. Thom, M., and Maretzki, A., 1985, Group translocation as a mechanism for sucrose transfer into vacuoles from sugarcane cells, Proc. Natl. Acad. Sci. U.S.A., 82: 4697.PubMedCrossRefGoogle Scholar
  38. Werner, C., and Matile, P., 1985, Accumulation of coumarylglucosides in vacuoles of barley mesophyll protoplasts, J. Plant Physiol., 118: 237.CrossRefGoogle Scholar
  39. Willenbrink, J., and Doll, S., 1979, Characteristics of the sucrose uptake system of vacuoles isolated from red beet tissue. Kinetics and specificity of the sucrose uptake system, Planta, 147: 159.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Jean Guern
    • 1
  • Jean-Pierre Renaudin
    • 2
  • Hélène Barbier-Brygoo
    • 1
  1. 1.Laboratoire de Physiologie Cellulaire VégétaleCNRS/INRAGif-sur-YvetteFrance
  2. 2.Station de Physiopathologie VégétaleINRADijonFrance

Personalised recommendations