Plant Vacuoles pp 255-265 | Cite as

Active Transport of Amino-Acids and Calcium Ions in Fungal Vacuoles

  • Yasuhiro Anraku
Part of the NATO ASI Series book series (NSSA, volume 134)


Yeasts are favored model systems of eukaryote cells in investigations on the intracellular compartments of ions and inorganic metabolites. Vacuoles are the largest organelles in yeast cells and they are postulated to function as lysosomes and storage compartments (Matile, 1978; Wiemken and Nurse, 1973; Wiemken and Dürr, 1974; Huber-Wälchli and Wiemken, 1979). We have demonstrated the presence in the vacuolar membrane of the yeast Saccharomyces cerevisiae of an H+-translocating ATPase (Kakinuma et al., 1981; Ohsumi et al., 1985 b; Uchida et al., 1985) and several active transport systems, which are specific for Ca2+ (Ohsumi and Anraku, 1983), arginine (Ohsumi and Anraku, 1981), and other nine amino-acids (Sato et al., 1984 a; Sato et al., 1984 b). Using a preparation of rightside-out vacuolar membrane vesicles of high purity, we showed that the H+-ATPase generates an electrochemical potential difference of protons across the membrane of 180 mV, interior acid (Kakinuma et al., 1981), and that the electrochemical proton gradient formed drives all the above transport by a mechanism of n H+/substrate antiport (Ohsumi and Anraku, 1983; Ohsumi and Anraku, 1981; Sato et al., 1984 a).


Saccharomyces Cerevisiae Vacuolar Membrane Active Transport System Electrochemical Proton Gradient Vacuolar Compartment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boller, T., Dürr, M., and Wiemken, A., 1975, Characterization of a specific transport system for arginine in isolated yeast vacuoles, Eur. J. Biochem., 54:81.PubMedCrossRefGoogle Scholar
  2. Cooper, T. G., 1982, Transport in Saccharomyces cerevisiae, in: “The Molecular Biology in the Yeast Saccharomyces: Metabolism and Gene Expression”, J. Strathern, E. W. Jones, and J. R. Broach, eds., Cold Spring Harbor Laboratory, New-York.Google Scholar
  3. Crabeel, M., and Grenson, M., 1970, Regulation of histidine uptake by specific feedback inhibition of two histidine permeases in Saccharomyces cerevisiae Eur. J. Biochem., 14:197.PubMedCrossRefGoogle Scholar
  4. Eddy, A. A., 1980, Some aspects of amino-acid transport in yeast, in: “Microorganisms and Nitrogen Sources”, J. W. Payne, ed., Wiley, Chichester, New-York, Brisbane, Toronto.Google Scholar
  5. Eilam, Y., 1982, The effect of monovalent cations on calcium efflux in yeasts, Biochim. Biophys. Acta, 687:8.CrossRefGoogle Scholar
  6. Grenson, M., Hou, C., and Crabeel, M., 1970, Multiplicity of the amino-acid permea-ses in Saccharomyces cerevisiae: IV. Evidence for a general amino-acid permease, J. Bacteriol., 103:770.PubMedGoogle Scholar
  7. Huber-Wälchli, V., and Wiemken, A., 1979, Differential extraction of soluble pools from the cytosol and the vacuoles of yeast Candida utilis using DEAE-dextran, Arch. Microbiol., 120:141.CrossRefGoogle Scholar
  8. Kakinuma, Y., Ohsumi, Y., and Anraku, Y., 1981, Properties of H+-translocating adenosine-triphosphatase in vacuolar membranes of Saccharomyces cerevisiae J. Biol. Chem., 256:10859.PubMedGoogle Scholar
  9. Kitamoto, K., Ohsumi, Y., and Anraku, Y., 1984, Quantitative determination of vacuolar and cytosolic amino-acid pools in Saccharomyces cerevisiae, in: “Abstract of the Annual Meetings of Agricul. Chem. Soc. Japan”.Google Scholar
  10. Matile, P., 1978, Biochemistry and function of vacuoles, Annu. Rev. Plant Physiol., 29:193.CrossRefGoogle Scholar
  11. Messenguy, F., Colin, O., and Ten Have, J.-P., 1980, Regulation of compartmentation of amino-acid pools in Saccharomyces cerevisiae and its effects on metabolic control, Eur. J. Biochem., 108:439.PubMedCrossRefGoogle Scholar
  12. Nicholls, D., and Akerman, K., 1982, Mitochondrial calcium transport, Biochim. Biophys. Acta, 683:57.Google Scholar
  13. Ohsumi, Y., and Anraku, Y., 1981, Active transport of basic amino-acids driven by a proton-motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae, J. Biol. Chem., 256:2079.PubMedGoogle Scholar
  14. Ohsumi, Y., and Anraku, Y., 1983, Calcium transport driven by a proton-motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae, J. Biol. Chem., 258:5614.PubMedGoogle Scholar
  15. Ohsumi, Y., and Anraku, Y., 1987, On the nature of changes induced by cupric ion in the permeability barrier of yeast plasma membrane, Biochim. Biophys. Acta, submitted.Google Scholar
  16. Ohsumi, Y., Anraku, Y., and Kitamoto, K., 1985 a, Yeast vacuoles: Their functions and applications in brewing (in Japanese), J. Brewing Soc. Japan, 80:11.CrossRefGoogle Scholar
  17. Ohsumi, Y., Uchida, E., and Anraku, Y., 1985 b, The H+-translocating ATPase in vacuolar membranes of Saccharomyces cerevisiae, in: “Biochemistry and Function of Vacuolar Adenosine-triphosphatase in Fungi and Plants”, B. P. Marin, ed., Springer-Verlag, Berlin, Heidelberg, New-York, and Tokyo.Google Scholar
  18. Sato, T., Ohsumi, Y., and Anraku, Y., 1984 a, Substrate specificities of active transport systems for amino-acids in vacuolar membrane vesicles of Saccharomyces cerevisiae: Evidence of seven independent proton/amino-acid antiport systems, J. Biol. Chem., 259:11509PubMedGoogle Scholar
  19. Sato, T., Ohsumi, Y., and Anraku, Y., 1984 b, An arginine/histidine exchange transport system in vacuolar membrane vesicles of Saccharomyces cerevisiae, J. Biol. Chem., 259:11509.PubMedGoogle Scholar
  20. Silver, S., 1977, Calcium transport in microrganisms, in: “Microorganisms and Minerals”, E. D. Weinberg, ed., Dekker, New-York.Google Scholar
  21. Stroobant, P., and Scarborough, G. A., 1979, Active transport of calcium in Neuro- spora plasma membrane vesicles, Proc. Natl. Acad. Sci. U.S.A., 76:3102.PubMedCrossRefGoogle Scholar
  22. Uchida, E., Ohsumi, Y., and Anraku, Y., 1985, Purification and properties of H+translocating, Mgt+-adenosine-triphosphatase from vacuolar membranes of Saccharomyces cerevisiae, J. Biol. Chem., 260:1090.PubMedGoogle Scholar
  23. Wiemken, A., and Diirr, M., 1974, Characterization of amino-acid pools in the vacuolar compartment of Saccharomyces cerevisiae, Arch. Microbiol., 101:45.Google Scholar
  24. Wiemken, A., and Nurse, 1973, Isolation and characterization of the amino-acid pools located within the cytoplasm and vacuoles of Candida utilis, Planta, 109:293.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Yasuhiro Anraku
    • 1
  1. 1.Department of Biology, Faculty of ScienceUniversity of TokyoHongo, TokyoJapan

Personalised recommendations