Advertisement

Plant Vacuoles pp 247-253 | Cite as

Some Characteristics of Tonoplast NO3 Transport Processes on Acer Pseudoplatanus L. Cells

  • Michèle Monestiez
  • Abdel Magid Belabed
  • Anne-Marie Pennarum
  • Monique Convert
  • Daniel Cornel
  • Jean-Pierre Rona
Part of the NATO ASI Series book series (NSSA, volume 134)

Abstract

Data on the NO3 accumulation mechanisms at the tonoplast has remained widely unknown. NO3 uptake induced a depolarization or an hyperpolarization of cells (Ullrich and Novacky, 1981; Thibaud and Grignon, 1981). This can be classically attributed to an electrogenic 0H/NO3 antiport or H+/NO3 symport at the plasmalemma (Rona and Cornel, 1984; Thibaud and Grignon, 1981). But the existence of an NO3inhibited and Cl-stimulated Mg-ATPase on tonoplast is now well established (Sze, 1985). Furthermore, NO3 vacuolar net accumulation could give rise to depolarization of the tonoplastic membrane. Nitrate induced hyperpolarization in cells could result partly from the depolarization of the tonoplast. The aim of these experiments was to investigate some of the NO3 vacuolar uptake characteristics and those of related electrical events.

Keywords

Ammonium Molybdate Acer PSEUDOPLATANUS Tonoplast Vesicle Passive Flux Active Influx 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aslam, R., and Oaks, A. N., 1975, Effect of glucose on the induction of nitratereductase in corn roots, Plant Physiol., 56: 634.Google Scholar
  2. Belton, P. S., Lee, R. B., and Ratcliffe, R. G., 1985, A 14N nuclear magnetic resonance study of inorganic metabolism in barley, maize and pea roots, J. Exptl. Bot., 36: 190.CrossRefGoogle Scholar
  3. Hager, A., Frenzel, R., and Laible, D., 1980, ATP-dependent proton transport into vesicles of microsomal membranes of Zea mays coleoptiles, Z. Naturforsch., 35c: 783.Google Scholar
  4. Marigo, G., Bouyssou, H., and Belkoura, H., 1985, Vacuolar efflux of malate and its influence on nitrate accumulation in Catharanthus roseus cells, Plant Sci. Letters, 39: 97.Google Scholar
  5. Peterson, G. L., 1978, A simplified method for analysis of inorganic phosphate in the presence of interferring substances, Anal. Biochem., 84: 164.Google Scholar
  6. Rona, J. P., and Cornel, D., 1985, An electrogenic proton pump on the tonoplast of Acer pseudoplatanus L. free cells and isolated vacuoles, in: “Biochemistry and Physiology of Vacuolar Adenosine-Triphosphatase in Fungi and Plants”, Springer-Verlag, Berlin, Heidelberg, New-York and Tokyo.Google Scholar
  7. Sze, H., 1985, H+-translocating ATPases. Advances using membrane vesicles, Annu. Rev. Plant Physiol., 36: 175.CrossRefGoogle Scholar
  8. Thibaud, J. P., and Grignon, C., 1981, Mechanism of nitrate uptake in corn roots, Plant Sci. Letters, 22: 279.Google Scholar
  9. Ulrich, W. R., and Novacky, A., 1981, Nitrate-dependent membrane potential changes and their induction in Lemna gibba G1, Plant Sci. Letters, 22: 211.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Michèle Monestiez
    • 1
  • Abdel Magid Belabed
    • 1
  • Anne-Marie Pennarum
    • 1
  • Monique Convert
    • 1
  • Daniel Cornel
    • 1
  • Jean-Pierre Rona
    • 1
  1. 1.Laboratoire d’Electrophysiologie des MembranesUniversité de Paris VIIParis-Cedex 05France

Personalised recommendations