Plant Vacuoles pp 235-245 | Cite as

Isolation of Tonoplast Vesicles from Kiwi Fruit Cells: Electrochemical Investigation of K+ and H+ Membrane Transport Linked to a Magnesium-ATP Hydrolytic Activity

  • Jean-Pierre Rona
  • F. Chedhomme
  • M. Convert
  • Michèle Monestiez
Part of the NATO ASI Series book series (NSSA, volume 134)


Mechanical breaking of giant cells of the peripheral layer of Actinidia chinensis fruits produces in the extraction juice, many large vesicles that appear like free vacuoles or protoplasts (Chedhomme and Rona, 1984). The latter are of a much smaller size than the initial cells; these pseudoprotoplasts are always devoid of nuclei as in the case with “vacuoplasts” of Poterioochromonas malhamensis (Jochem et al., 1983).


Acer Pseudoplatanus Kiwi Fruit Vacuolar ATPase Plant Vacuole Tonoplast Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammann, D., Lanter, F., Steiner, R. A., Schulthess, P., Shijo, Y., and Simon, W., 1981, Neutral carrier based hydrogen ion selective microelectrode for extra and intracellular studies, Anal. Chem. 53: 2267.PubMedCrossRefGoogle Scholar
  2. Barbier-Brygoo, H., Gibrat, R., Renaudin, J. P., Brown, S. C., Pradier, J. M., Grignon, C., and Guern, J., 1985, Membrane potential difference of isolated plant vacuoles: positive or negative ?, Biochim. Biophys. Acta, 819:215.Google Scholar
  3. Bennett, A. B., and Spanswick, R. M., 1983, Optical measurements of OpH and At in corn root membrane vesicles. Kinetic analysis of Cl-effects on a proton translocating ATPase, J. Membrane Biol., 71: 95.CrossRefGoogle Scholar
  4. Chedhomme, F., and Rona, J. P., 1984, Suitability of the spontaneously formed vesicles in Kiwi fruit juice for investigating the electrical properties of the tonoplast, in: “Abstracts of the IVème Congrès de la F.S.E.P.V. (Strasbourg, France, July 29/August 3 1984”, pp. 478–479, Université de Strasbourg.Google Scholar
  5. Chedhomme, F., and Rona, J. P., 1986, Isolation and electrical characterization of tonoplast vesicles from the Kiwi fruit (Actinidia chinensis), Physio. Plant. 67:29.Google Scholar
  6. Cornel, D., Grignon, C., Rona, J. P., and Heller, R., 1983, Measurements of intra-cellular potassium activity in protoplasts of Acer pseudoplatanus: Origin of their electropositivity, Physiol. Plant. 57:208.Google Scholar
  7. Gibrat, R., Barbier-Brygoo, H., Guern, J., and Grignon, C., 1985, Transtonoplast potential difference and surface potential of isolated vacuoles, in: “Biochemistry and Function of Vacuolar ATPase in Fungi and Plants”, B. P. Marin, ed., Springer-Verlag, Berlin, Heidelberg, New-York, and Tokyo.Google Scholar
  8. Hartmann, C., 1983, Quelques aspects de la senescence du fruit, Physiol. Vég. 21:137.Google Scholar
  9. Heatherbell, D. A., 1975, Identification and quantitative analysis of sugars and non-volatile organic acids in Chinese gooseberry fruits (Actinidia chinensis Planch.), J. Sci. Fd. Agric. 26: 815.CrossRefGoogle Scholar
  10. Jeschke, W. D., and Stelter, W., 1976, Measurements of longitudinal ion profiles in single roots of Hordeum and Atriplex by use of flameless atomic spectroscopy, Planta 128: 107.Google Scholar
  11. Jochem, P., Thomson, K. S., and Schab, D., 1983, Isolation of ‘vacuoplasts’ from Poterioochromonas malhamensis Plant Physiol. 73: 418.Google Scholar
  12. Jochem, P., Rona, J. P., Smith, J. A. C., and Lüttge, U., 1984, Anion-sensitive ATPase activity and proton transport in isolated vacuoles of species of the CAM genus Kalanchoe, Physiol. Plant. 62:410.Google Scholar
  13. Kurkdjian, A., and Barbier-Brygoo, H., 1983, A hydrogen ion-selective liquid membrane microelectrode for measurement of the vacuolar pH of plant cells in suspension culture, Anal. Biochem. 132: 96.PubMedCrossRefGoogle Scholar
  14. Leigh, R. A., and Wyn-Jones, R. G., 1984, A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell, New Phytol. 97: 1.CrossRefGoogle Scholar
  15. Monestiez, M., Belabed, A. M., Pennarum, A. M., Convert, M., Cornel, D., and Rona, J. P., 1986, Some characteristics of tonoplast NO3- transport processes on Acer pseudoplatanus L. cells, in: “Plant Vacuoles. Their Importance in Solute Compartmentation and Their Appications in Biotechnology”, B. Marin, ed., Plenum Publishing Corporation, New-York.Google Scholar
  16. O’Neill, S. D., Bennett, A. B., and Spanswick, R. M., 1983, Characterization of a NO3--sensitive H+-ATPase from corn roots, Plant Physiol. 72: 837.PubMedCrossRefGoogle Scholar
  17. Pitman, M. G., and Saddler, H. D. W., 1967, Active sodium and potassium transport in cells of barley roots, Proc. Natl. Acad. Sci. U.S.A., 57: 44.PubMedCrossRefGoogle Scholar
  18. Peterson, G. L., 1978, A simplification of the protein assay method of Lowry et al. which is more generally applicable, Anal. Biochem. 83: 346.CrossRefGoogle Scholar
  19. Pitman, M. G., Lauchli, A., and Stelzer, R., 1981, Ion distribution in roots of barley seedlings measured by electron probe X-ray microanalysis, Plant Physiol. 68: 673.PubMedCrossRefGoogle Scholar
  20. Reid, M. S., Heatherbell, D. A., and Pratt, H. K., 1982, Seasonal patterns in chemical composition of the fruit of Actinidia chinensis J. Amer. Soc. Hort. Sci., 107: 316.Google Scholar
  21. Rona, J. P., and Cornel, D., 1979, Résistances electriques chez les cellules libres, les protoplastes et les vacuoles isolées d’Acer pseudoplatanus L., Physiol. Vég. 17:1.Google Scholar
  22. Rona, J. P., and Cornel, D., 1985, An electrogenic proton pump on the tonoplast of Acer pseudoplatanus L. free cells and isolated vacuoles, in: “Biochemisstry and Function of Vacuolar ATPase in Fungi and Plants”, B. P. Marin, ed., Springer-Verlag, Berlin, Heidelberg, New-York, and Tokyo..Google Scholar
  23. Rona, J. P., Cornel, D., Chedhomme, F., and Heller, R., 1984, The contribution of the plasmalemma and the tonoplast to the electrical properties of Acer pseudoplatanus L. cells, in: “Membrane Transport in Plants”, K. Janacek, R. Rybova, and K. Sigler, eds., Czech. Acad. Sci. Press, Prague.Google Scholar
  24. Rona, J. P., Cornel, D., Grignon, C. and Heller, R., 1982, The electrical potential difference across the tonoplast of Acer pseudoplatanus cells, Physiol. Vég. 20:459.Google Scholar
  25. Rona, J. P., Van De Sype, G., Camel, D., Grignon, C. and Heller, R., 1980, Plasmolysis effect on electrical characteristics of free cells and protoplasts of Acer pseudoplatanus L., J. Electroanal. Chem. 116:377.Google Scholar
  26. Spanswick, R. M., O’Neill, S. D., and Bennett, A. B., 1984, Plasma membrane and tonoplast ATPases: Characteristics, H+ transport, and reconstitution, in: “Membrane Transport in Plants”, K. Janacek, R. Rybova, and K. Sigler, eds., Czech. Acad. Sci. Press, Prague.Google Scholar
  27. Sze, H., 1984, H+-translocating ATPases of the plasma membrane and tonoplast of plant cells, Physiol. Plant., 61: 683.Google Scholar
  28. Wagner, G. J., and Lin, W., 1982, An active proton pump of intact vacuoles isolated from Tulipa petals, Biochim. Biophys. Acta 689:261.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Jean-Pierre Rona
    • 1
  • F. Chedhomme
    • 1
  • M. Convert
    • 1
  • Michèle Monestiez
    • 1
  1. 1.Laboratoire d’Electrophysiologie des MembranesUniversité de Paris VIIParis-Cedex 05France

Personalised recommendations